Math, asked by yana85, 1 year ago

help plz......... ♥♥♥

Attachments:

Answers

Answered by Grimmjow
13

\sf{Given : \dfrac{1 + CosA}{SinA}}


\textsf{Multiplying the Numerator and Denominator with (1 - CosA), We get :}


\implies \sf{\dfrac{(1 + CosA)(1 - CosA)}{SinA(1 - CosA)}


\textsf{We know that : \;} \boxed{\sf{(a + b)(a - b) = a^2 - b^2}}


\implies \boxed{\sf{(1 + CosA)(1 - CosA) = 1 - Cos^2A}}


\implies \sf{\dfrac{(1 - Cos^2A)}{SinA(1 - CosA)}


\textsf{We know that : \;} \boxed{\sf{1 - Cos^2A = Sin^2A}}


\implies \sf{\dfrac{Sin^2A}{SinA(1 - CosA)}


\implies \sf{\dfrac{SinA}{(1 - CosA)}

Answered by Avengers00
12
________________________________________

\underline{\huge{\textsf{To Prove : }}}

\dfrac{1 + cos\, A}{sin\, A} = \dfrac{sin\, A}{1-cos\, A}

\underline{\underline{\huge{\textbf{Solution:}}}}

\underline{\large{\textbf{Step-1}}}
Consider LHS

\underline\large\textbf{LHS =}}}

= \frac{1 + cos\, A}{sin\, A}

\underline{\large{\textbf{Step-2}}}
Rationalize the Numerator.

i.e., Multiplying and Dividing with (1 + cos\, A)

\implies \frac{(1 + cos\, A)(1-cos\, A)}{sin\, A(1-cos\, A)}

\underline{\large{\textbf{Step-3}}}
Express numerator, Using the identity
(a+b)(a-b)= (a^{2}-b^{2})

(1 + cos\, A)(1-cos\, A) = (1-cos^{2}\, A)

Substitute in Numerator.

\implies \frac{1 -cos^{2}\, A}{sin\, A(1-cos\, A)}

\underline{\large{\textbf{Step-4}}}
Express the Numerator, Using the Identity
sin^{2}\, A =(1-cos^{2}\, A)

Substitute in Numerator

\implies \frac{sin^{2}\, A}{sin\, A(1-cos\, A)}

\underline{\large{\textbf{Step-5}}}
cancel out the common sin A in Numerator and Denominator.

\implies \frac{sin\, A}{1-cos\, A}

\underline\large\textbf{=RHS}}}

________________________________________
Similar questions