Math, asked by saima6168, 5 months ago

help plz 7th grade questions ​

Attachments:

Answers

Answered by ImSiddhi
0

Answer:

here ab||CE

and ac is transversal

bac= ace..... alternate angle

BAC= 40......GIVEN ....1

ABC=BCD...... CORRESPONDING ANGLE

ABC= 80.....GIVE ... 2

NOW IN TRAINGLE ABC

A+B+C= 180°

40+80+C=180... FROM 1AND 2

C= 180-120

C= 60

A= 40 AND B= 80 and c= 60

Step-by-step explanation:

hope it will help you... Try to follow me so that I can help you in next example

Answered by LaeeqAhmed
0

\color{red}\huge{\underline{{\tt GIVEN : -}}}

  •  \tt \angle ACE=40°
  •  \tt\angle ECD=80°
  •  \tt and  \:  \: BA \:  ||  \: CE

\color{red}\huge{\underline{{\tt SOLUTION : -}}}

 \tt  \purple{since : }

 \tt \angle ACB ,\angle ACE \: \:  and \:  \: \angle ECD  \:  lie \: on \:   \tt same \: plane.

 \implies \tt \angle ACB  + \angle ACE  +  \angle ECD = 180 \degree

 \implies \tt \angle ACB  + 40 \degree + 80 \degree = 180 \degree(given)

 \implies \tt \angle ACB  +  120 \degree = 180 \degree

 \implies \tt \angle ACB   = 180 \degree - 120 \degree

 \boxed{ \orange{\therefore \tt \angle ACB   = 60 \degree}}...(1)

  \purple{ \tt since : }

 \tt BA \:  ||  \: CE(BA \:  \:  parallel \:  \: to   \: \: CE)

\tt \angle ABC=\angle ECD (corresponding \: angles)

  \boxed{ \orange{ \tt\therefore \ \angle ABC=80 \degree}}...(2)

 \purple{ \tt by \: \:  angle \:  \: sum \:  \: property : }

 \tt\angle ABC+\angle ACB+\angle BAC=180°

 \purple{ \tt from \:  \: (1) \:  \: and \: (2) : }

 \implies \tt60  \degree + 80 \degree  + \angle BAC=180°

\implies \tt 140 \degree  + \angle BAC=180°

\implies \tt  \angle BAC=180° -140 \degree

 \boxed{ \orange{  \tt\therefore \angle BAC=40°}}

Therefore,

Each angle of the triangle ABC is:

  •  \blue{ \tt\angle BAC=40°}
  • \blue{ \tt\angle ABC=80°}
  •  \tt\blue{\angle ACB=60°}

HOPE IT HELPS!!

Similar questions