Math, asked by dod96, 4 months ago

help plzzzzzzz.... ​

Attachments:

Answers

Answered by BrainlyEmpire
62

\begin{gathered}\begin{tabular}{|c|c|c|c|c|c|}\cline{1-6} \tt Class & \tt 0-20 & \tt 20-40 & \tt 40-60 & \tt 60-80 & \tt 80-100 \\\cline{1-6}\tt Frequency &\tt 5 & \tt 15& \tt 30 & \tt 8 & \tt 2 \\\cline{1-6}\end{tabular}\end{gathered}

⠀⠀⠀⠀⠀⠀⠀

We have to find, Median of given data.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\boxed{\begin{array}{cccc}\sf Class\: mark \: (x)&\sf Frequency \: (f)&\sf CF\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\\\sf 5 - 20&\sf 5&\sf 5\\\\\sf 20 - 40&\sf 15&\sf 20\\\\\sf 40 - 60&\sf 30&\sf 50 \\\\\sf 60 - 80&\sf 8&\sf 58\\\\\sf 80 - 100&\sf2&\sf 60\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\\\sf&\sf  \sum  f = 60&\sf\end{array}}

⠀⠀⠀⠀⠀⠀

\dag\;{\underline{\frak{We\;know\;that,}}}\\ \\

\boxed{\begin{minipage}{6cm}$\bigstar$\:\:\sf Median = l + $\sf\dfrac{\frac{n}{2}-C.f.}{f}\times h\\\\Here:\\1)\:l=Lower\:limit\:of\:median\:class=40\\2)\:C.f.=Cumulative\:frequency\:of\:class\\preceeding\:the\:median\:class=20\\3)\:f= frequency\:of\:median\:class=30\\4)\:h= Class\:interval =60-40=20\end{minipage}}

⠀⠀⠀⠀⠀⠀⠀

\dag\;{\underline{\frak{Formula\;to\:find\;Median,}}}\\ \\

\star\;{\boxed{\sf{\pink{l + \dfrac{ \frac{n}{2} - C.F.}{f} \times h}}}}\\ \\

{\underline{\sf{\bigstar\;Putting\;values\;in\;formula\;:}}}\\ \\

:\implies\sf 40 + \dfrac{ \frac{60}{2} - 20}{30} \times 20\\ \\

:\implies\sf 40 + \dfrac{30 - 20}{30} \times 20\\ \\

:\implies\sf 40 + \dfrac{10}{30} \times 20\\ \\

:\implies\sf 40 + \dfrac{20}{3}\\ \\

:\implies\sf 40 + 6.66\\ \\

:\implies{\underline{\boxed{\sf{\purple{46.66}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Median\;of\;given\; distribution\;is\;{\textsf{\textbf{46.66}}}.}}}

Answered by Anonymous
63

Answer:

\begin{gathered}\begin{tabular}{|c|c|c|c|c|c|}\cline{1-6} \tt Class & \tt 0-20 & \tt 20-40 & \tt 40-60 & \tt 60-80 & \tt 80-100 \\\cline{1-6}\tt Frequency &\tt 5 & \tt 15& \tt 30 & \tt 8 & \tt 2 \\\cline{1-6}\end{tabular}\end{gathered}

⠀⠀⠀⠀⠀⠀⠀

We have to find, Median of given data.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\boxed{\begin{array}{cccc}\sf Class\: mark \: (x)&\sf Frequency \: (f)&\sf CF\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\\\sf 5 - 20&\sf 5&\sf 5\\\\\sf 20 - 40&\sf 15&\sf 20\\\\\sf 40 - 60&\sf 30&\sf 50 \\\\\sf 60 - 80&\sf 8&\sf 58\\\\\sf 80 - 100&\sf2&\sf 60\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\\\sf&\sf  \sum  f = 60&\sf\end{array}}

⠀⠀⠀⠀⠀⠀

\dag\;{\underline{\frak{We\;know\;that,}}}\\ \\

\boxed{\begin{minipage}{6cm}$\bigstar$\:\:\sf Median = l + $\sf\dfrac{\frac{n}{2}-C.f.}{f}\times h\\\\Here:\\1)\:l=Lower\:limit\:of\:median\:class=40\\2)\:C.f.=Cumulative\:frequency\:of\:class\\preceeding\:the\:median\:class=20\\3)\:f= frequency\:of\:median\:class=30\\4)\:h= Class\:interval =60-40=20\end{minipage}}

⠀⠀⠀⠀⠀⠀⠀

\dag\;{\underline{\frak{Formula\;to\:find\;Median,}}}\\ \\

\star\;{\boxed{\sf{\pink{l + \dfrac{ \frac{n}{2} - C.F.}{f} \times h}}}}\\ \\

{\underline{\sf{\bigstar\;Putting\;values\;in\;formula\;:}}}\\ \\

:\implies\sf 40 + \dfrac{ \frac{60}{2} - 20}{30} \times 20\\ \\

:\implies\sf 40 + \dfrac{30 - 20}{30} \times 20\\ \\

:\implies\sf 40 + \dfrac{10}{30} \times 20\\ \\

:\implies\sf 40 + \dfrac{20}{3}\\ \\

:\implies\sf 40 + 6.66\\ \\

:\implies{\underline{\boxed{\sf{\orange{46.66}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Median\;of\;given\; distribution\;is\;{\textsf{\textbf{46.66}}}.}}}

Similar questions