Math, asked by karan6559, 4 months ago

help plzzzzzzz............ ​

Attachments:

Answers

Answered by BrainlyEmpire
75

Given :-

The earth taken out from well is spread in its embarkment .

So Volume of well = Volume of embarkment

Radius of well (r) = 10m/2= 5m

Height of well(h) = 14m

Width of embarkment (R-r)=5m→R= 10m

To Find:-

We have to find the height of embarkment .

Solution :-

A well is in the form of cylinder so,

\underline{\boxed{\sf\ \ Volume\ of \ Well= \pi r^2 h}}

Find volume of well with radius : 5m and height 14m

:\implies\sf\ Volume\ of \ well= \pi \times (5)^2\times 14\\ \\ \\ :\implies\sf \ Volume \ of\ well = \pi \times 25\times 14\\ \\ \\ :\implies\sf\ Volume\ of\ well= \underline{\boxed{\purple{\sf\ 350\pi m^3}}}----- \ eq.\ (i)

A embarkment in the form of hollow cylinder So,

\underline{\boxed{\sf\ Volume \ of \ embarkment = \pi h(R^2-r^2)}}

Now Volume of embarkment with R=10m, r= 5m and Height - H

:\implies\sf\ Volume\ of \ embarkment= \pi \times \Big[(10)^2-(5)^2\Big]\times h\\ \\ \\ :\implies\sf\ Volume \ of \ embarkment= \pi \times \Big[100-25\Big]\times h\\ \\ \\ :\implies\sf\ Volume\ of \ embarkment= \underline{\boxed{\red{\sf\ 75h\pi m^3}}}----- \ eq.\ (ii)

Volume of Well= Volume of embarkment

Now , from equation (i) and (ii)

:\implies\sf \ 75h\not{\pi} = 350\not{\pi} \\ \\ \\ :\implies\sf h = \cancel{\dfrac{350}{75}}\\ \\ \\ :\implies\sf Height\ of \ embarkment= \underline{\boxed{\blue{\sf\ 4.67m}}}

Attachments:
Answered by Anonymous
25

Given :-

The earth taken out from well is spread in its embarkment .

So Volume of well = Volume of embarkment

Radius of well (r) = 10m/2= 5m

Height of well(h) = 14m

Width of embarkment (R-r)=5m→R= 10m

To Find:-

We have to find the height of embarkment .

Solution :-

A well is in the form of cylinder so,

\underline{\boxed{\sf\ \ Volume\ of \ Well= \pi r^2 h}}

Find volume of well with radius : 5m and height 14m

:\implies\sf\ Volume\ of \ well= \pi \times (5)^2\times 14\\ \\ \\ :\implies\sf \ Volume \ of\ well = \pi \times 25\times 14\\ \\ \\ :\implies\sf\ Volume\ of\ well= \underline{\boxed{\purple{\sf\ 350\pi m^3}}}----- \ eq.\ (i)

A embarkment in the form of hollow cylinder So,

\underline{\boxed{\sf\ Volume \ of \ embarkment = \pi h(R^2-r^2)}}

Now Volume of embarkment with R=10m, r= 5m and Height - H

:\implies\sf\ Volume\ of \ embarkment= \pi \times \Big[(10)^2-(5)^2\Big]\times h\\ \\ \\ :\implies\sf\ Volume \ of \ embarkment= \pi \times \Big[100-25\Big]\times h\\ \\ \\ :\implies\sf\ Volume\ of \ embarkment= \underline{\boxed{\red{\sf\ 75h\pi m^3}}}----- \ eq.\ (ii)

Volume of Well= Volume of embarkment

Now , from equation (i) and (ii)

:\implies\sf \ 75h\not{\pi} = 350\not{\pi} \\ \\ \\ :\implies\sf h = \cancel{\dfrac{350}{75}}\\ \\ \\ :\implies\sf Height\ of \ embarkment= \underline{\boxed{\blue{\sf\ 4.67m}}}

Attachments:
Similar questions