Math, asked by lpo47, 4 months ago

help plzzzzzzzz ??? ​

Attachments:

Answers

Answered by BrainlyEmpire
93

Answer:-

\pink{\bigstar}\large\boxed{\rm\purple{x = \dfrac{7}{17}}}

\pink{\bigstar}\large\boxed{\rm\purple{y = \dfrac{-1}{17}}}

• Given:-

\sf{2x - 3y = 1}\dashrightarrow\bf\red{[eqn.i]}

\sf{3x - 4y = 1}\dashrightarrow\bf\red{[eqn.ii]}

• To Find:-

Value of x and y.

• Method:-

\sf{Elimination \: Method}

• Solution:-

Firstly,

Multiplying eqn[i] by 4 and eqn.[ii] by 3:-

\sf{4(2x - 3y = 1)}

\sf{8x - 12y = 4}\dashrightarrow\bf\red{[eqn.iii]}

\sf{3(3x - 4y = 1)}

\sf{9x - 12y = 3}\dashrightarrow\bf\red{[eqn.iv]}

Adding eqn.[iii] and eqn.[iv]:-

\sf{8x - 12y + (9x - 12y) = 4 + 3}

\sf{8x - 12y + 9x - 12y = 7}

\sf{8x + 9x = 7}

\sf{17x = 7}

\large\bf\green{x = \dfrac{7}{17}}

Substituting the value of x in eqn.[i]:-

\sf{2x - 3y = 1}

\sf{2 \times \dfrac{7}{17} - 3y = 1} \\

\sf{\dfrac{14}{17} - 3y = 1} \\

\sf{\dfrac{14}{17} - 1 = 3y } \\

\sf{\dfrac{14-17}{17} = 3y} \\

\sf{\dfrac{-3}{17} = 3y } \\

\sf{y = \dfrac{-3}{17 \times 3}} \\

\large\bf\green{y = \dfrac{-1}{17}}

________________________________________________________________________

Answered by BabeHeart
142

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \huge\sf \blue{ \:  Given:-}

\sf{2x - 3y = 1}

\sf{3x - 4y = 1}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \huge \sf \blue{To  \: Find:-}

   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \small\bf{Value  \: of  \: x  \: and  \: y.}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \huge \sf  \blue{Solution:-}

\sf{4(2x - 3y = 1)}

° \sf{8x - 12y = 4}

\sf{3(3x - 4y = 1)}

° \sf{9x - 12y = 3}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\sf{8x - 12y + (9x - 12y) = 4 + 3}

\sf{8x - 12y + 9x - 12y = 7}

\sf{8x + 9x = 7}

\sf{17x = 7}

\large\bf\orange{x = \dfrac{7}{17}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

° \sf{2x - 3y = 1}

\sf{2 \times \dfrac{7}{17} - 3y = 1} \\

\sf{\dfrac{14}{17} - 3y = 1} \\

\sf{\dfrac{14}{17} - 1 = 3y } \\

\sf{\dfrac{14-17}{17} = 3y} \\

\sf{\dfrac{-3}{17} = 3y } \\

\sf{y = \dfrac{-3}{17 \times 3}} \\

\large\bf\orange{y = \dfrac{-1}{17}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions