Math, asked by Anonymous, 7 months ago

Help!
_____

RD Sharma IXth
[Surface Area and Volumes.]

Dekhna 2nd Level ka h -,- ​

Attachments:

Answers

Answered by Anonymous
26

Answer:

Given:-

a, b and c are dimensions of the cuboid.

a - length

b - breadth

c - height

S is its surface area and V is the volume of the cuboid.

To prove:-

 \frac{1}{v}  =  \frac{2}{s} ( \frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{c} )

Solution:-

We know that,

Volume of a cuboid = a × b × c

And Surface area = 2(lb + bh + hl)

= 2(ab + bc + ca)

Let R.H.S

 =  \frac{2}{s}   ( \frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{c} )

And L.H.S

 =  \frac{1}{v}

 \Longrightarrow \:  \frac{1}{v}  =  \frac{2}{s} ( \frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{c} ) \\  \\\Longrightarrow \:  \frac{1}{v}   =  \frac{2}{2(ab + bc + ac)} ( \frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{c} ) \\  \\ \Longrightarrow \:  \frac{1}{v}  =  \frac{1}{ab + bc + ac} ( \frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{c} ) \\  \\ \:  \\  =  \frac{1}{ab + bc + ac}  ( \frac{ab + bc + ac}{abc} ) \\  \\  =  \frac{1}{abc}

\Longrightarrow \:  \frac{1}{v}  =  \frac{1}{abc}  \\  \\\Longrightarrow \:  \frac{1}{abc}   =  \frac{1}{abc}  \:  \:  \:  \: (since \: v \:  = abc)

Hence, proved.

Answered by Anonymous
12

V denotes volume

S denotes surface area

a,b,c denotes dimensions

Attachments:
Similar questions