Math, asked by vibhanshu8441, 7 months ago

help teachersplsssyyyy​

Attachments:

Answers

Answered by hukam0685
2

Step-by-step explanation:

Given that:

 \frac{sin \theta}{cot\theta + cosec \theta}  = 2 + \frac{sin \theta}{cot\theta  -  cosec \theta} \\  \\

Solution:

Take LHS

Multiply and divide by

cot\theta  -  cosec \theta \\  \\

 \frac{sin \theta}{cot\theta + cosec \theta} \times  \frac{cot\theta  - cosec \theta}{cot\theta  -  cosec \theta}  \\  \\  =  \frac{sin \theta(cot\theta  - cosec \theta)}{ {cot}^{2} \theta - {cosec}^{2} \theta}  \\  \\  \because {cosec}^{2} \theta - {cot}^{2} \theta = 1 \\  \\  = \frac{sin \theta(cosec\theta  - cot \theta)}{1} \\  \\  = sin \theta\bigg( \frac{1}{sin \theta}  -  \frac{cos \theta}{sin \theta} \bigg) \\  \\

 = sin \theta\bigg( \frac{1 - cos \theta}{sin \theta}\bigg  ) \\  \\ = 1  - cos \theta  \:  \:  \:  \: ...eq1\\  \\

Now take RHS

2 + \frac{sin \theta}{cot\theta  -  cosec \theta} \\  \\  = 2 + \frac{sin \theta}{cot\theta  -  cosec \theta} \times  \frac{cot\theta   +   cosec \theta}{cot\theta   +  cosec \theta}  \\  \\  = 2  -  \frac{sin \theta(cot\theta    + cosec \theta)}{ {cosec}^{2} \theta -  {cot}^{2}  \theta }  \\  \\  = 2 - sin \theta(cot\theta    + cosec \theta) \\  \\  = 2 - sin \theta\bigg(\frac{cos \theta}{sin \theta}    +  \frac{1}{sin \theta} \bigg) \\ \\  = 2 -  \frac{sin \theta(1 + cos \theta)}{sin \theta}  \\  \\  = 2 - 1 - cos \theta \\  \\  = 1 - cos \theta \:  \:  \:  \: ...eq2 \\  \\

From Eq1 and eq2

it is proved that

\frac{sin \theta}{cot\theta + cosec \theta}  = 2 + \frac{sin \theta}{cot\theta  -  cosec \theta} \\

Hope it helps you

Similar questions