Math, asked by kalelzulueta, 7 hours ago

HELP! What is the largest number k for which 2x+3y=20 and 3x+4y=k have the same number of positive integer solutions (x,y)?

Answers

Answered by hotelcalifornia
0

Given:

2x+3y=20

3x\;+\;4y\;=\;k

To find:

The largest number k for the equations have the same number of positive integer solutions (x,\;y)

Step-by-step explanation:

2x\;+\;3y\;=\;20\\\3y\;=\;-2x\;+\;20\\y\;=\;\frac{-2}3x\;+\;\frac{20}3 ------------------- (1)

3x\;+\;4y\;=\;k\\4y\;=\;-3x\;+\;k\\y\;=\;\frac{-3}4x\;+\;\frac k4------------------- (2)

Equating (1) and (2),

\\\frac{-2}3x\;+\;\frac{20}3\;=\;\frac{-3}4x\;+\;\frac k4

\frac{-8x\;+\;80}{12}\;=\;\frac{-9x\;+\;3k}{12}

-8x\;+\;80\;=\;-9x\;+\;3k\;

x\;=\;3k\;-\;80

These are positive integer solutions and lie in the first quadrant.

From equation (1) we know that it is in the first quadrant for

0\;<\;x\;<\;10

0\;<\;y\;<\;6.667

Therefore, the possibilities of (x,\;y) are

x\;=\;\left\{1,2,3,4,5,6,7,8,9\right\}\\y\;=\;\left\{1,2,3,4,5,6\right\}

Any pair of (x,\;y) satisfies the positive integer solutions.

x\;=\;3k\;-\;80\\9\;=\;3k\;-\;80\\k\;=\;\frac{89}3

For 1\;\leq\;x\;\leq\;9

27\;\leq\;k\;\leq\;\frac{89}3

k\;=\;27,\;28,\;29

Therefore, for k\;=\;29

(x, y) \;=\; (7,2)

Answer:

The largest number k for the equations that have the same number of positive integer solutions (x,\;y) is 29

Answered by amitnrw
1

Largest number k = 48 for  which  3x+4y=k have the same number of positive integer solutions (x,y) as 2x+3y=20

Given:

  • 3x+4y=k have the same number of positive integer solutions (x,y) as 2x+3y=20

To Find:

Largest possible value of k

Step 1:

Find number of  possible positive integer solutions for 2x+3y=20

3y = 20 - 2x

3y = 2(10 - x)

y must be a multiple of 2

y = 0 not possible as as only positive integers are the solutions

y = 2  => x = 7

y = 4  => x = 4

y = 6 => x  = 1

These are only possible positive integer solutions

as y = 8 will result in negative value of x.

Hence 3 possible solution

( 1 , 6) , (4 , 4) , ( 7 , 2)

Step 2:

Find maximum value of k

3x + 4y = k

Three possible solutions

( a , b) , (a + 4 , b - 3) , (a + 8 , b - 6)

where a can be 1 , 2 , 3 or  4

b - 6 can be 1 , 2 , 3  =>  b can be 7 , 8 , 9

Taking maximum value of a and b  for max value of k

(4 , 9) , ( 8 , 6) and ( 12 , 3) are the solution

3(4) + 4(9) = 48 = k

and 3x + 4y = 48  is the equation

Hence largest number k = 48

Similar questions