Math, asked by johnjoseph35, 2 months ago

Help with number (ii) please

Attachments:

Answers

Answered by susahukarisunita1988
0

Answer:

4/12-4 - 9/12+4 now solve it you get answer I think hope it's helpful for you

Answered by Anonymous
22

\large\sf\underline{Given\::}

Expression :

  • \bf\:\frac{ \sqrt{2} }{ \sqrt{6}  -  \sqrt{2} }  -  \frac{ \sqrt{3} }{ \sqrt{6}  +   \sqrt{ 2} }

\large\sf\underline{Solution\::}

\sf\:\frac{ \sqrt{2} }{ \sqrt{6}  -  \sqrt{2} }  -  \frac{ \sqrt{3} }{ \sqrt{6}  +   \sqrt{ 2} }

  • LCM of (6 - 2) and (6 + 2) = (√6 - √2) (√6 + √2)

\sf\implies\: \frac{[ \sqrt{2} \times ( \sqrt{6}   +  \sqrt{2} )] -[\sqrt{3} \times ( \sqrt{6}  -  \sqrt{2}) ]}{( \sqrt{6}  -  \sqrt{2} )( \sqrt{6} +  \sqrt{2})  }

  • Multiplying the terms and removing the brackets in numerator

\sf\implies\: \frac{[\sqrt{12}   +  \sqrt{4} ] -[\sqrt{18}  -  \sqrt{6}]}{( \sqrt{6}  -  \sqrt{2} )( \sqrt{6} +  \sqrt{2})  }

  • We can use an identity in the denominator

Identity to be used :

\maltese\bf\color{aqua}{(a+b) (a-b) =a^{2}-b^{2}}

Here :

  • a = \color{blue}{\sqrt{6}}

  • b = \color{blue}{\sqrt{2}}

\sf\implies\: \frac{[\sqrt{12}   +  \sqrt{4} ] -[\sqrt{18}  -  \sqrt{6}]}{( \sqrt{6})^{2}  -  (\sqrt{2}) ^{2} }

\sf\implies\: \frac{[\sqrt{2 \times 2 \times 3}   +  \sqrt{2 \times 2} ] -[\sqrt{2 \times 3 \times 3}  -  \sqrt{6}]}{6 - 2 }

\sf\implies\: \frac{[2\sqrt{3}+2] -[3\sqrt{2} -  \sqrt{6}]}{4}

  • Removing the brackets

\small{\underline{\boxed{\mathrm\red{\implies\: \frac{2\sqrt{3}   +  2 -3\sqrt{2}+ \sqrt{6}}{4}  }}}}

Now it can't be simplified further since we can't calculate the numbers with dissimilar irrational part .

!! Hope it helps !!

Similar questions