Math, asked by bimalarai287, 5 hours ago

help with this math problem​

Attachments:

Answers

Answered by diwanamrmznu
31

★GIVEN:-

 \implies \:  \sin\alpha   =  \frac{b}{ \sqrt{a {}^{2} + b {}^{2}  } }  \\

★verified:-

 \implies \: b \:  \cot \:  \alpha  = a

★solution:-

we know that

 \implies   \red{\sin \theta = \frac{b}{ \sqrt{a {}^{2} + b {}^{2}  } }    = \frac{p}{h}  }  \\

we know that Pythagoras trangle rule

 \implies \star \pink{h {}^{2}  = p {}^{2} + b {}^{2}  } \\  \\  \\  \implies \star \red{b =  \sqrt{h {}^{2} - p {}^{2}  } } \\

 \implies \red {b} =  \sqrt{ (\sqrt{a {}^{2} + b {}^{2}) {}^{2} - b {}^{2}    } }  \\  \\  \\  \implies  \red{b} =  \sqrt{a {}^{2} + b {}^{2} - b {}^{2}   }  \\  \\  \\  \implies \:  \red{b} =  \sqrt{a {}^{2} }  \\  \\  \\  \implies \red{b} = a

we know that

  \implies \: \green{ \cot \theta =  \frac{ \red{b}}{p}  =  \frac{a}{b} } \\

  \implies \: \cot \alpha   =  \frac{a}{b}  \\

cross multiplie

 \implies \orange{b \:  \cot \alpha = a  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {(hence \: proved)}  \\

=================================

note

 \implies \red{b} = base \\  \\  \\  \implies \: b = parpendicular

______________________________

I hope it helps you

Answered by varadad25
14

Question:

If \displaystyle{\sf\:\sin\:\alpha\:=\:\dfrac{b}{\sqrt{a^2\:+\:b^2}}} then prove that \displaystyle{\sf\:b\:\cot\:\alpha\:=\:a}

Answer:

\displaystyle{\boxed{\red{\sf\:b\:\cot\:\alpha\:=\:a\:}}}

Step-by-step-explanation:

We have given that,

\displaystyle{\sf\:\sin\:\alpha\:=\:\dfrac{b}{\sqrt{a^2\:+\:b^2}}}

Now, we know that,

\displaystyle{\pink{\sf\:\sin^2\:\alpha\:+\:\cos^2\:\alpha\:=\:1\:}}

\displaystyle{\implies\sf\:\cos^2\:\alpha\:=\:1\:-\:\sin^2\:\alpha}

\displaystyle{\implies\sf\:\cos^2\:\alpha\:=\:1\:-\:\left(\:\dfrac{b}{\sqrt{a^2\:+\:b^2}}\:\right)^2}

\displaystyle{\implies\sf\:\cos^2\:\alpha\:=\:1\:-\:\dfrac{b^2}{a^2\:+\:b^2}}

\displaystyle{\implies\sf\:\cos^2\:\alpha\:=\:\dfrac{a^2\:+\:b^2\:-\:b^2}{a^2\:+\:b^2}}

\displaystyle{\implies\sf\:\cos^2\:\alpha\:=\:\dfrac{a^2}{a^2\:+\:b^2}}

\displaystyle{\implies\boxed{\blue{\sf\:\cos\:\alpha\:=\:\dfrac{a}{\sqrt{a^2\:+\:b^2}}}}}

Now, we know that,

\displaystyle{\pink{\sf\:\cot\:\alpha\:=\:\dfrac{\cos\:\alpha}{\sin\:\alpha}}}

\displaystyle{\implies\sf\:\cot\:\alpha\:=\:\dfrac{\dfrac{a}{\sqrt{a^2\:+\:b^2}}}{\dfrac{b}{\sqrt{a^2\:+\:b^2}}}}

\displaystyle{\implies\sf\:\cot\:\alpha\:=\:\dfrac{a}{\cancel{\sqrt{a^2\:+\:b^2}}}\:\times\:\dfrac{\cancel{\sqrt{a^2\:+\:b^2}}}{b}}

\displaystyle{\implies\sf\:\cot\:\alpha\:=\:\dfrac{a}{b}}

\displaystyle{\implies\underline{\boxed{\red{\sf\:b\:\cot\:\alpha\:=\:a\:}}}}

Hence proved!

Similar questions