Math, asked by adityasomani94, 2 months ago

#HelpASAP

Prove :  \rm {\sqrt{ \dfrac{1 + sin \: \theta}{1 - sin \: \theta} } = sec \: \theta + tan \: \theta}

Answers

Answered by FleurxExotica
3

Correct Question :-

Prove :  \tt {\sqrt{ \dfrac{1 + sin \: \theta}{1 - sin \: \theta} } = sec \: \theta + tan \: \theta}

Correct Answer :-

Solving $ \large \mathcal{LHS}$ —

 \sf { \sqrt{ \dfrac{1 + sin \: \theta}{1 - sin \: \theta} } }

  • Rationalising...

 \leadsto \sf { = \sqrt{ \dfrac{1 + sin \: \theta}{1 - sin \: \theta} \times \dfrac{1 + sin \: \theta}{1 + sin \: \theta} }}

\leadsto \sf {= \sqrt{ \dfrac{ {( 1 + sin \: \theta)}^{2} }{1 - {sin}^{2}\theta } }}

  • Identity : sin²∅ + cos²∅ = 1

 \leadsto { \sf {=\sqrt{ \dfrac{{(1 + sin \: \theta)}^{2} }{{cos}^{2} \theta} }} }

\leadsto \sf {= \sqrt{{ \bigg( \dfrac{1 + sin \: \theta}{cos \: \theta} \bigg)}^{2} }}

 \leadsto \sf{ =\dfrac{1}{cos \: \theta} + \dfrac{sin \: \theta}{cos \: \theta} }

\leadsto \sf {=sec \: \theta + tan \: \theta }

— Results $ \large \mathcal{RHS}$

∴ Hence, Proved!!!

 \\ \\ \\

@MrCyber

Similar questions