Help@@!!!
Can you produce a current when the magnet goes up and down in the loops?
If yes, plz explain, and if no, plz explain as well.Thx
Answers
Step-by-step explanation:
If we then push a bar magnet through the loop, the needle in the galvanometer will move, indicating an induced current. However, once we stop the motion of the magnet, the current returns to zero. The field from the magnet will only induce a current when it is increasing or decreasing.
please mark me as brainliest
Step-by-step explanation:
If we run an electric current through a wire, it will produce a magnetic field around the wire. The direction of this magnetic field can be determined by the right-hand rule. According to the physics department at Buffalo State University of New York, if you extend your thumb and curl the fingers of your right hand, your thumb points in the positive direction of the current, and your fingers curl in the north direction of the magnetic field.
If you bend the wire into a loop, the magnetic field lines will bend with it, forming a toroid, or doughnut shape. In this case, your thumb points in the north direction of the magnetic field coming out of the center of the loop, while your fingers will point in the positive direction of the current in the loop.
If we run a current through a wire loop in a magnetic field, the interaction of these magnetic fields will exert a twisting force, or torque, on the loop causing it to rotate, according to the Rochester Institute of Technology. However, it will only rotate so far until the magnetic fields are aligned. If we want the loop to continue rotating, we have to reverse the direction of the current, which will reverse the direction of the magnetic field from the loop. The loop will then rotate 180 degrees until its field is aligned in the other direction. This is the basis for the electric motor.
Conversely, if we rotate a wire loop in a magnetic field, the field will induce an electric current in the wire. The direction of the current will reverse every half turn, producing an alternating current. This is the basis for the electric generator. It should be noted here that it is not the motion of the wire but rather the opening and closing of the loop with respect to the direction of the field that induces the current. When the loop is face-on to the field, the maximum amount of flux passes through the loop. However, when the loop is turned edge-on to the field, no flux lines pass through the loop. It is this change in the amount of flux passing through the loop that induces the current.