Math, asked by iamemmaroth, 8 months ago

helpp me out! please ​

Attachments:

Answers

Answered by Anonymous
5

Question:-

 \dfrac{1 +  \cos\theta -  \sin {}^{2}  \theta }{ \sin\theta(1 +  \cos \theta)  }  =  \cot\theta

Solution:-

\dfrac{1 +  \cos\theta -  \sin {}^{2}  \theta }{ \sin\theta(1 +  \cos \theta)  }

\dfrac{  \cos\theta  + 1-  \sin {}^{2}  \theta }{ \sin\theta(1 +  \cos \theta)  }

\dfrac{ \cos\theta  +   \ \cos {}^{2}  \theta }{ \sin\theta(1 +  \cos \theta)  }

 \rm \dfrac{ \cos \theta(1 +  \cos \theta) }{ \sin\theta(1 +  \cos\theta)  }

\rm \dfrac{  \cos \theta \cancel{(1 +  \cos \theta)} }{ \sin\theta \cancel{(1 +  \cos\theta) } }

 \dfrac{ \cos \theta }{ \sin\theta }

 \cot\theta

Hence proved

Some trigonometry identities

 \to \csc \theta =  \dfrac{1}{ \sin\theta}

 \to \cot \theta =  \dfrac{ \cos \theta}{ \sin \theta}

 \to \tan\theta =  \dfrac{ \sin  \theta }{ \cos \theta}

 \to \sec \theta =  \dfrac{1}{ \cos\theta }

 \to \sin {}^{2} \theta +  \cos {}^{2}  \theta  = 1

Answered by Lueenu22
2

\huge\mathfrak{\color{orange}{\underline{\underline{Answer♡}}}}

Answer♡

if you will give thanks to this answer then I will give you 1000 free points .I am promising.

refer the attachment

\huge\underline{ \red{❥L} \green{u}\blue{e} \purple{e} \orange{n}\pink{u}}\:

\huge\green{Thanks}

Attachments:
Similar questions