helpp!!!
prove that:
cosecA-cotA= tanA/2
Answers
Answered by
4
Step-by-step explanation:
to prove : cosecA-cotA= tan(A/2)
LHS = cosecA-cotA
= cosecA-cotA * [(cosecA+cotA)/(cosecA+cotA)]
= [(cosecA+cotA)(cosecA-cotA)] / (cosecA+cotA)
= (cosec²A-cot²A)/ (cosecA+cotA)
= 1/ (cosecA+cotA)
= 1/ ((1/sinA)+(cosA/sinA))
= 1 / [(1+cosA)/sinA]
= sinA / (1+cosA)
= tan(A/2)
= RHS
=> LHS = RHS
hence proved
Attachments:
Similar questions