Math, asked by vibhanshu8441, 10 months ago

helpppp guyssss helppppppppppp​

Attachments:

Answers

Answered by hukam0685
2

Step-by-step explanation:

 \frac{1}{(x - 1)(x - 2)}  +  \frac{1}{(x - 2)(x - 3)}  =  \frac{2}{3}  \\  \\ take \: LCM \: in \: LHS \\  \\  \frac{x - 3 + x - 1}{(x - 1)(x - 2)(x - 3)}  =  \frac{2}{3}  \\  \\  \frac{2x - 4}{( {x}^{2} - 3x + 2)(x - 3) }  =  \frac{2}{3}  \\  \\  \frac{2(x - 2)}{ {x}^{3} - 3 {x}^{2} - 3 {x}^{2}  + 9x + 2x - 6  }  =  \frac{2}{3}  \\  \\ cancel \: 2 \: from \: both \: sides \\  \\  \frac{x - 2}{ {x}^{3} - 6 {x}^{2} + 11x - 6  }  =  \frac{1}{3}  \\  \\ cross \: multiply \\  \\ 3(x - 2) = {x}^{3} - 6 {x}^{2} + 11x - 6 \\  \\ {x}^{3} - 6 {x}^{2} + 11x - 6 - 3x + 6 = 0 \\  \\ {x}^{3} - 6 {x}^{2} + 8x  = 0 \\  \\ x( {x}^{2}  - 6x + 8) = 0 \\  \\ x = 0 \\  \\ or \\  \\  {x}^{2}  - 6x + 8 = 0 \\  \\  {x}^{2}  - 4x - 2x + 8 = 0 \\  \\ x(x - 4) - 2(x - 4) = 0 \\  \\ (x - 4)(x - 2) = 0 \\  \\ x - 4 = 0 \\  \\ x = 4 \\  \\ or \\  \\ x - 2 = 0 \\  \\ x = 2 \\  \\

Values of x can be 0,2 and 4,but in the question it is given that x≠1,2,3

So,discard x=2

Value of x: 0 and 4

Hope you understand

Answered by amitnrw
2

Given :   1/(x - 1)(x - 2)   +  1/(x - 2)(x - 3)   = 2/3  , x  ≠ 1 , 2 , 3

To find : Value of x  

Solution:

1/(x - 1)(x - 2)   +  1/(x - 2)(x - 3)   = 2/3

multiplying both sides by  (x - 1)(x - 3)

=> (x - 3)/(x - 2)   + (x -1)/(x - 2)   =  2 (x - 1)(x - 3)/3

=> (x - 3 + x  - 1)/(x - 2) = 2 (x - 1)(x - 3)/3

=> (2x - 4)/(x - 2) = 2 (x - 1)(x - 3)/3

=> 2(x - 2)/(x - 2)  =  2 (x - 1)(x - 3)/3

=>  2 = 2 (x - 1)(x - 3)/3

=> 1  = (x - 1)(x - 3)/3

=>  (x - 1)(x - 3) = 3

=> x² -  4x  + 3 = 3

=> x² - 4x = 0

=> x(x - 4) = 0

=> x = 0  , 4

x  =  0   &  4

Learn more:

If x²-y²= 12 and x³+y³ = 72, find the value of x and y​ - Brainly.in

https://brainly.in/question/8403056

find the value of x by factorization, x2-8x+1280=0 - Brainly.in

https://brainly.in/question/7343350

Similar questions