Math, asked by sushant125098, 11 months ago

Helppppp!!

Four years ago, the father’s age was three times the age of his son. The total of the ages of the father and the son after four years will be 64 years. What is the father’s age at present?

A) 32 years
B) 36 years
C) 44 years
D)Data inadequate
E) None of these​

Answers

Answered by Anonymous
5

Answer:

hey mate

Step-by-step explanation:

see ur answer in my attachment:-

Attachments:
Answered by Anonymous
18

\underline{\bigstar\:\textbf{According \: to \: given \: in \: question:}}

\:\bullet\:\sf\ Let \: the \: age \: of \: son \: be \: x \: years

\:\bullet\:\sf\ So, \: the \: age \: of \: father \: be \: 3x \: years

\underline{\bigstar\:\textbf{After \: 4 \: years \: from \: the \: present :}}

\normalsize\twoheadrightarrow\sf\ (Age \: of \: son) + (Age \: of \: father) = 64

\normalsize\twoheadrightarrow\sf\ (x + 4) + (3x + 4) = 64

\normalsize\twoheadrightarrow\sf\ x + 4 + 3x + 4= 64

\normalsize\twoheadrightarrow\sf\ 4x + 8 = 64

\normalsize\twoheadrightarrow\sf\ 4x  = 56

\normalsize\twoheadrightarrow\sf\ x = \frac{\cancel{56}}{\cancel{4}}

\normalsize\twoheadrightarrow\sf\ x = 14

 \rule{100}1

\normalsize\star\sf\ Age \: of \: son :

\normalsize\dashrightarrow\sf\ A_{s} = x \\ \\ \normalsize\dashrightarrow\sf\ A_{s} = 14

\normalsize\maltese\: \: {\boxed{\sf \red{Age \: of \: son = 14 \: yrs.}}}

\normalsize\star\sf\ Age \: of \: father :

\normalsize\dashrightarrow\sf\ A_{f} = 3x \\ \\ \normalsize\dashrightarrow\sf\ A_{s} = 3 \times\ 14 = 42yrs.

\normalsize\maltese\: \: {\boxed{\sf \red{Age \: of \: father = 42 \: yrs.}}}

Similar questions