Math, asked by SUMI12332, 1 year ago

hemispherical tank full of water is emptied by a pipe at the rate of 3* 4 / 7 litre per second how much time will it take to empty half of the tank if it is in cm in diameter
Urgently plz​

Attachments:

Answers

Answered by suchi003
5
hope it helps u........
Attachments:

SUMI12332: i need ans for 5 mrks question
suchi003: this is maths not literature my frnd
suchi003: length doesnt determine marks.
SUMI12332: thanku frnd
Answered by mathdude500
1

Answer:

\sf \: \boxed{\sf \: Time\:taken \: to \:empty \:  half \:tank \: =  \: 16.5 \: min \: }\\

Step-by-step explanation:

Given that, Diameter of hemispherical tank = 3 m

So, Radius of hemispherical tank, r = \frac{3}{2} m

We know, Volume of hemispherical tank of radius r is given by

{\sf \: \sf \: Volume_{(hemispherical\:tank)} =  \dfrac{2}{3} \pi {r}^{3} \: }  \\

So,

{\sf \: \sf \: Volume_{( \frac{1}{2} \:  hemispherical\:tank)} =   \dfrac{1}{2}  \times  \dfrac{2}{3} \pi {r}^{3} \: }  \\

{\sf \: \sf \: Volume_{( \frac{1}{2} \:  hemispherical\:tank)} =   \dfrac{1}{3} \pi {r}^{3} \: }  \\

{\sf \: \sf \: Volume_{( \frac{1}{2} \:  hemispherical\:tank)} =   \dfrac{1}{3}  \times \dfrac{22}{7}  \times  {\left(\dfrac{3}{2} \right)}^{3} \: }  \\

{\sf \: \sf \: Volume_{( \frac{1}{2} \:  hemispherical\:tank)} =   \dfrac{1}{3}  \times \dfrac{22}{7}  \times  \dfrac{27}{8}  \: }  \\

{\sf \: \sf \: Volume_{( \frac{1}{2} \:  hemispherical\:tank)} =   \dfrac{22}{7}  \times  \dfrac{9}{8}  \: }  \\

{\sf \: \sf \: Volume_{( \frac{1}{2} \:  hemispherical\:tank)} =   \dfrac{11}{7}  \times  \dfrac{9}{4}  \: }  \\

\implies\sf \: {\sf \: \sf \: Volume_{( \frac{1}{2} \:  hemispherical\:tank)} =   \dfrac{99}{28}   \:  {m}^{3}  \: }  \\

Now, it is given that,

\sf \: Tank\:emptied\:by\:pipe\:in \:1 \: sec = 3 \dfrac{4}{7} \: litres \\

\sf \: Tank\:emptied\:by\:pipe\:in \:1 \: sec = \dfrac{25}{7} \: litres \\

\sf \:Tank\:emptied\:by\:pipe\:in \:1 \: sec = \dfrac{25}{7}  \times \dfrac{1}{1000} \:  {m}^{3}   \\

\implies\sf \:Tank\:emptied\:by\:pipe\:in \:1 \: sec = \dfrac{25}{7000} \:  {m}^{3}   \\

Now,

\sf \: Time\:taken \: to \: empty \: half \: tank \:  \\

\sf \:  =  \: \dfrac{Volume_{( \frac{1}{2} \:  hemispherical\:tank)}}{Tank\:emptied \: by \: pipe\:in\:1 \: sec\:}  \\

\sf \:  =  \: \dfrac{99}{28}  \div \dfrac{25}{7000}  \\

\sf \:  =  \: \dfrac{99}{28} \times \dfrac{7000}{25}  \\

\sf \:  =  \: \dfrac{99}{28} \times 280  \\

\sf \:  =  \: 99 \times 10  \\

\sf \:  =  \: 990 \: sec\\

\sf \:  =  \: \dfrac{990}{60}  \: min\\

\sf \:  =  \: 16.5 \: min\\

Hence,

\implies\sf \: \boxed{\sf \: Time\:taken \: to \:empty \:  half \:tank \: =  \: 16.5 \: min \: }\\

Similar questions