hen find the angles of the triangle.
In which of the following cases is a triangle possible with the given group of angles?
(a) 90°, 60°, 30°
(b) 77°, 84°, 20°
(C) 59°, 60°, 61°
(d) 35° 229 229
(e) 73° 73° 33°
() 540 540 720
Answers
Step-by-step explanation:
answer are (f) ,(e).(d),
Question :
Find the angles of the triangle. In which of the following cases is a triangle possible with the given group of angles?
(a) 90°, 60°, 30°
(b) 77°, 84°, 20°
(c) 59°, 60°, 61°
(d) 35°, 229°, 229°
(e) 73°, 73°, 33°
(f) 54°, 54°, 72°
--------------
Before, finding the answer. Let's find out on how we can find the answer.
- Remember!!
Sum of all angles in a triangle is .
- So, if you add up all the angles. We will be able to find.
______________
Given :
(a) 90°, 60°, 30°
(b) 77°, 84°, 20°
(c) 59°, 60°, 61°
(d) 35°, 229°, 229°
(e) 73°, 73°, 33°
(f) 54°, 54°, 72°
To find :
- which of the following is a triangle.
Solution :
(a) 90°, 60°, 30° :
Sum of all angles in a triangle = 180°
= 90° + 60° + 30°
= 180°
Hence, Triangle is possible.
(b) 77°, 84°, 20° :
Sum of all angles in a triangle = 180°
= 77° + 84° + 20°
= 181°
Hence, Triangle is not possible.
(c) 59°, 60°, 61° :
Sum of all angles in a triangle = 180°
= 59° + 60° + 61°
= 180°
Hence, Triangle is possible.
(d) 35°, 229°, 229° :
Sum of all angles in a triangle = 180°
= 35° + 229° + 229°
= 493°
Hence, Triangle is not possible.
(e) 73°, 73°, 33° :
Sum of all angles in a triangle = 180°
= 73° + 73° + 33°
= 179°
Hence, Triangle is not possible.
(f) 54°, 54°, 72°:
Sum of all angles in a triangle = 180°
= 54° + 54°+ 72°
= 180°
Hence, Triangle is possible.