Math, asked by shaikhashpak2004, 2 months ago

Hence, the sum of the parelle sides of the tapezium 64 cm area
of the trepezium is 320m3, then find the height of the trapezium​

Answers

Answered by Sen0rita
68

\mathfrak{Given}\begin{cases}  \sf \: Sum \: of \:  two  \: parallel \: sides \: of \: a \: trapezium \: is \:  \bold{64 \: cm}. \\  \\  \sf \: Area \: of \: the \: trapezium \: is \:  \bold{320 \: cm {}^{2} }.\end{cases}

Need to find : height of the trapezium.

⠀⠀⠀⠀⠀⠀____________________

 \:  \:

For finding the area of the trapezium, formula is given as :

 \:  \:

 \star \: \underline{\boxed{\sf\purple{Area_{(trapezium)}  =  \frac{1}{2}  \times sum \: of \: parallel \: sides \:  \times height}}}

 \:  \:

 \mathfrak{ \underline{Substituting \: the \: values \:  : }}

 \:  \:

\sf:\implies \: Area_{(trapezium)}  =  \frac{1}{2}  \times sum \: of \: parallel \: sides \:  \times height \\  \\  \\ \sf:\implies \: 320 =  \frac{1}{2}  \times 64 \times height \\  \\  \\ \sf:\implies \: 320 = 32 \times height \\  \\  \\ \sf:\implies \: height \:  =   \cancel\frac{320}{32}  \\  \\  \\ \sf:\implies \: \underline{\boxed{\mathfrak\pink{height = 10 \: cm}}} \:  \bigstar \\  \\  \\  \\ \sf\therefore{\underline{Hence, \: the \: height \: of \: the \: trapezium \: is \:  \bold{10 \: cm}.}}

Answered by Anonymous
3

Correct Question:

The sum of the parallel sides of the trapezium is 64 cm and the area of the trapezium is 320 cm², then find the height of the trapezium.

_____________________________

Given:

For trapezium,

  1. Sum of parallel sides = 64 cm
  2. Area = 320 cm²

To find:

  • The height of the trapezium.

Solution:

\boxed{\tt{\red{Area_{(trapezium)}}=\dfrac{1}{2}\times \ Sum \ of \ parallel \ sides\times \ Height}}

\rm{\leadsto{320=\dfrac{1}{2}\times64\times \ \purple{h}}}

\rm{\therefore{\purple{h}= 10 \ cm}}

Therefore, the height of the trapezium is 10 cm.

Similar questions