Math, asked by gupthsriram3596, 9 months ago

here are the first 3 terms of a different sequence 1,2,4 write down two numbers that could be 4th term and the 5th term of this sequence

Answers

Answered by Anonymous
4

Answer:

\sf{The \ 4^{th} \ and \ 5^{th} \ term \ are}

\sf{8 \ and \ 16 \ respectively.}

Given:

\sf{The \ given \ sequence \ is \ 1, \ 2, \ 4,...}

To find:

\sf{The \ 4^{th} \ and \ 5^{th} \ term \ of \ the \ sequence}

Solution:

\sf{Here, \ t_{1}=1,} \ t_{2}=2 \ and \ t_{3}=4

\sf{Now,}

\sf{\dfrac{t_{2}}{t_{1}}=\dfrac{2}{1}=2}

\sf{Also,}

\sf{\dfrac{t_{3}}{t_{2}}=\dfrac{4}{2}=2}

\sf{Hence, \ the \ given \ sequence \ is \ an \ G.P.}

\sf{Here, \ a=1 \ and \ r=2}

\boxed{\sf{a_{n}=ar^{n-1}}}

\sf{\therefore{a_{4}=1(2)^{4-1}}}

\sf{\therefore{a_{4}=2^{3}}}

\sf{\therefore{a_{4}=8}}

\sf{a_{5}=1(2)^{5-1}}

\sf{\therefore{a_{5}=2^{4}}}

\sf{\therefore{a_{5}=16}}

\sf\purple{\tt{\therefore{The \ 4^{th} \ and \ 5^{th} \ term \ are}}}

\sf\purple{\tt{8 \ and \ 16 \ respectively.}}

_____________________________

\sf\blue{Extra \ information:}

\sf{In \ a \ G.P. \ sum \ of \ n \ terms}

\sf{is \ given \ by}

\sf{S_{n}=a\times\dfrac{(r^{n}-1)}{(r-1)}}

Similar questions