Here are the first four terms of a quadratic sequence. The nth term of this sequence is an^2 + bn + c. 1 11 27 49.
Find the values of a, b and c.
Can someone plz answer this question I really need this for homework. 15 points available.
Answers
Write down the nth term of this quadratic number sequence.
-3, 8, 23, 42, 65...
Step 1: Confirm the sequence is quadratic. This is done by finding the second difference.
Sequence = -3, 8, 23, 42, 65
1st difference = 11,15,19,23
2nd difference = 4,4,4,4
Step 2: If you divide the second difference by 2, you will get the value of a.
4 ÷ 2 = 2
So the first term of the nth term is 2n²
Step 3: Next, substitute the number 1 to 5 into 2n².
n = 1,2,3,4,5
2n² = 2,8,18,32,50
Step 4: Now, take these values (2n²) from the numbers in the original number sequence and work out the nth term of these numbers that form a linear sequence.
n = 1,2,3,4,5
2n² = 2,8,18,32,50
Differences = -5,0,5,10,15
Now the nth term of these differences (-5,0,5,10,15) is 5n -10.
So b = 5 and c = -10.
Step 5: Write down your final answer in the form an² + bn + c.
2n² + 5n -10
U can use it for finding a,b and c
Please mark brain list
Answer:
9+9=18
Step-by-step explanation:
so all u have to do is search up on brainly in