Math, asked by genius160, 5 days ago

Here is a proof I struggled to solve can anyone help?

Attachments:

Answers

Answered by suhail2070
0

Answer:

AREA OF ABE = AREA OF BCD.

Step-by-step explanation:

in \: triangle \: abe \: and \: triangle \: dbc \\  \\ ab = bd \: \:  \:  \:  ( \: ab \: bisects \: ec \:  \: given) \\  \\ eb = bc \: \:  \:  \:  \:  ( \: ab \: bisects \: ec \:  \: given) \\  \\ and \:  \:  \: angle \: (abe \: ) \:  =  \: angle \: (cbd \: ) \:  \:  \:  \:  \: ( \: vertically \: opposite \: angles \: ) \\  \\ therefore \:  \:  \: triangle \: abe \: is \: congruent \: to \: triangle \: dbc \: (by \: sas \: rule \: ) \\  \\ then \:  \:  \: area \:  \: of \: abe \:  =  \: area \: of \: bcd \:  \\  \\ because \: congruent \: triangles \: have \: equal \: areas.

Similar questions