Math, asked by lefalesleymofokeng, 1 month ago

Here is a small challenge for your entertainment and gratification. For any natural number n, let f(n) denote the sum of the numbers from 1 to n. Thus f(1)=1, f(2)=1+2=3, f(3)=1+2+3=6, f(100)=1+2+3+…+100=5050, etc.
It turns out that f is a polynomial of degree 2 in n. Figure out the coefficients of f:
f(n)=​

Answers

Answered by MaheswariS
3

\textbf{Given:}

\textsf{f(1)=1, f(2)=3, . . .  . .}

\textsf{and f(n) is the sum of numbers from 1 to n}

\textbf{To find:}

\textsf{f(n)}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{f(n)}

\mathsf{=Sum\;of\;numbers\;from\;1\;to\;n}

\mathsf{=1+2+3+\;.\;.\;.\;.+n}

\mathsf{=\dfrac{n(n+1)}{2}}

\mathsf{=\dfrac{n^2+n}{2}}

\implies\boxed{\mathsf{f(n)=\dfrac{n^2+n}{2}}}

Similar questions