Math, asked by DhanyaDA, 1 year ago

Here is the question

Solve

 {tan}^{ - 1} ( \dfrac{sinx}{1 + cosx} )

Answers

Answered by arpita8316
3

Step-by-step explanation:

tan^_1 (sin x/1+cos x)

  • tan^_1 {2sin(x/2)cos(x/2)/2cos^2(x/2)}

  • tan^_1 {sin(x/2)/cos(x/2)}
  • tan^_1 {tan(x/2)}
  • x/2

Answered by Anonymous
13

\Huge{\underline{\underline{\mathfrak{Question \colon }}}}

Find the value of :

 \large{ \sf{tan {}^{ - 1} ( \frac{sin \: x}{1 + cos \: x} )}} \\

\Huge{\underline{\underline{\mathfrak{Answer \colon }}}}

Formulas to be used

 \sf{sin2 \theta = 2sin \theta \: cos \theta} \\  \\  \sf{2 {cos}^{2} \frac{ \theta}{2}  = 1 + cos \theta }

Now,

 \rightarrow \:  \sf{  {tan}^{ - 1} (\frac{2sin \frac{x}{2} .cos \frac{x}{2} }{2 {cos}^{2} \frac{x}{2}  } )} \\  \\  \rightarrow \:  \sf{  {tan}^{ - 1}( \frac{2 sin \frac{x}{2} }{2cos \frac{x}{2} } ) } \\  \\  \rightarrow \:  \sf{ {tan}^{ - 1}( tan \:  \frac{x}{2} )} \\  \\  \huge{ \rightarrow \:  \tt{ \frac{x}{2} }}

Similar questions