Math, asked by vikram991, 1 year ago

here is your question please take best answer

Attachments:

Answers

Answered by Anonymous
79

 \huge \tt \underline \orange {Question}

Solve the Value for x

  1.  \tt  (\frac{4}{3} ) ^{ - 4}  \times (\frac{4}{3} ) ^{ - 5}  = (\frac{4}{3} ) ^{ - 3}
  2.  \tt {7}^{x}  \div  {7}^{ - 3}  =  { {7}^{5} }
  3.  \tt(4 {)}^{2x + 1}  \div 16 = 64
  4.  \tt  {2}^{x + 4}  -  {2}^{x + 2}  = 3
  5.   \tt{2}^{x}  -  {2}^{x - 1}  = 4
  6.  \tt( \frac{4}{5} ) ^{2x - 1}  \div  (\frac{4}{5} )^{ - 2}  = (\frac{4}{5} ) ^{3x}

 \huge \tt \underline \orange {Answer}

 \tt \red {Answer \: 1st}

 \tt \implies (\frac{4}{3} ) ^{ - 4}  \times (\frac{4}{3} ) ^{ - 5}  = (\frac{4}{3} ) ^{ - 3}

 \tt \implies( \frac{3}{4} )  ^{4} \times ( \frac{3}{4} ) ^{5}  = ( \frac{3}{4} ) ^{3x}  \\  \\    \tt  \implies ( \frac{3}{4} )  ^{4 + 5} = ( \frac{3}{4} )  ^{3x} \\  \\ \tt \implies( \frac{3}{4} )  ^{9} = ( \frac{3}{4} )  ^{3x} \\  \\   \tt \longrightarrow9 = 3x \\  \\  \tt \implies3x = 9 \\  \\ \tt \implies  x =  \cancel{ \frac{9}{3} } \\  \\  \tt \implies x = 3

 \tt \red {Answer \: 2nd}

 \tt\implies {7}^{x}  \div  {7}^{ - 3}  =  { {7}^{5} }

 \tt \implies {7}^{ - 3}  =  {7}^{5}  \\  \\  \tt \implies x - 3 =  5 \\  \\  \tt \implies x = 8

 \tt \red {Answer \: 3rd}

 \tt \implies (4 {)}^{2x + 1}  \div 16 = 64

 \tt  \implies {2}^{x + 4}  -  {2}^{x + 2}  = 3

 \tt \implies(4 {)}^{2x + 1}  \div  {4}^{2}  =  {4}^{3}  \\  \\   \tt \implies(4 {)}^{2x + 1 - 2}   =  {4}^{3} \\  \\  \tt \implies(4 {)}^{2x  - 1}=  {4}^{3} \\  \\   \bf\longrightarrow 2x - 1 = 3 \\  \\  \tt \implies 2x = 3 + 1  \\  \\ \tt \implies 2x = 4 \\  \\ \tt \implies x =  \cancel{ \frac{4}{2} } \\  \\ \tt \implies x = 2

 \tt \red {Answer \:4th}

 \tt \implies {2}^{x + 4}  -  {2}^{x + 2}  = 3

 \tt \implies  {2}^{x}  \times  {2}^{4}  -  {2}^{x}  \times  {2}^{2}  = 3 \\  \\ \tt \implies  {2}^{x}  [ {2}^{4}  -  {2}^{2} ] = 3 \\  \\  \tt \implies  {2}^{x}[16 - 4] = 3 \\  \\  \tt \implies  {2}^{x}  \times 12 = 3 \\  \\  \tt \implies  {2}^{x}  =  \frac{3}{12}  \\  \\  \tt \implies  {2x}^{ \frac{1}{4} }  \\  \\  \tt \implies  {2}^{x}  =  \frac{1}{ {2}^{2} }  \\  \\  \tt \implies  {2}^{x}  =  {2}^{ - 2}  \\  \\  \tt \implies  x =  - 2

 \tt \red {Answer \:5th}

  \tt \implies{2}^{x}  -  {2}^{x - 1}  = 4

 \tt \implies  {2}^{x}  -  \frac{ {2}^{x} }{2}  = 4 \\  \\  \tt \implies  {2}^{x}  (1 -  \frac{1}{2} )  = 4  \\  \\  \tt \longrightarrow  {2}^{x}  = 8 \\  \\ \tt \implies {2}^{x}  =  {2}^{3}  \\  \\ \tt \implies {x}  = 3

 \tt \red {Answer \: 6th}

 \tt \implies ( \frac{4}{5} ) ^{2x - 1}  \div  (\frac{4}{5} )^{ - 2}  = (\frac{4}{5} ) ^{3x}

 \tt \implies( \frac{4}{5} ) ^{2x - 1 - 2}  = ( \frac{4}{5}  {)}^{3x}  \\  \\ \tt \longrightarrow 2x - 4 = 3x \\  \\ \tt \implies  - x= 4 \\  \\ \tt \implies  x=  - 4

Attachments:
Answered by kaursimranjot46
0

hope this will help you and marks it as brainlist plzzzzzzzzz also follow me guys.

Attachments:
Similar questions