Math, asked by shivam123443348, 1 year ago

here n= 2^1/3

plzzz solve this question.....

Attachments:

Answers

Answered by Riya3052
2
n=2^1/3
=>
  \sqrt[3]{2}
Answered by TPS
1
Use the identity: a^3 -b^3 = (a-b)(a^2 + ab + b^2)

 {a}^{3}  -  {b}^{3} = (a - b)( {a}^{2} + ab +  {b}^{2})   \\  \\ a - b =  \frac{ {a}^{3}  -  {b}^{3}}{{a}^{2} + ab +  {b}^{2}}  \\  \\ take \: \: a = n \:  \: and \:  \: b = 1

 \frac{n}{n - 1}  \\  \\  =  \frac{n}{ \frac{ {n}^{3} -  {1}^{3}  }{ {n}^{2} + n \times 1 +   {1}^{2} } }  \\  \\  =  \frac{n \times (  {n}^{2} + n \times 1 +   {1}^{2}) }{{n}^{3} -  {1}^{3}  } \\  \\  = \frac{n \times (  {n}^{2} + n+1) }{{n}^{3} -1 } \\  \\  =\frac{ {n}^{3} +  {n}^{2} +n }{{n}^{3} -1 } \\  \\  = \frac{ {( {2}^{ \frac{1}{3} }) }^{3} + {( {2}^{ \frac{1}{3} }) }^{2} +{2}^{ \frac{1}{3} }}{{( {2}^{ \frac{1}{3} }) }^{3} - 1}  \\  \\  =  \frac{ 2 + {( {2}^{ \frac{1}{3} }) }^{2} +{2}^{ \frac{1}{3} }}{2 - 1} \\  \\  = 2 + {2}^{ \frac{2}{3} }  +{2}^{ \frac{1}{3} }

shivam123443348: perfect solution asusual :))
TPS: i dont know if you were looking for this. Let me know if there is any doubt
TPS: :)
shivam123443348: i will ask u later....
Similar questions