Math, asked by itzmedipayan2, 3 days ago

Here's one more question from ch-6,class-8, maths,USA.

if \: x = 2 +  \sqrt{3} \: find \:   {x }^{2} +  \frac{1}{ {x}^{2} } \\
Note: Don't spam
Need answer with explanation
Don't answer if you don't know
If you don't follow these then your answer will be strictly reported and correct answer will get brainliest. ​

Answers

Answered by chakrapanisharma001
12

Step-by-step explanation:

x= 2 + √3

1/x= 1 /2+√3 =1 / 2+√3 * 2- √3 /2-√3 =2-√3

x^2 = 4+3+4√3= 7+4√3

1/ x^2 = 7- 4√3

x^2+1/x^2=14

Answered by mathdude500
51

\large\underline{\sf{Solution-}}

Given that,

\rm \: x = 2 +  \sqrt{3} -  -  - (1) \\

Now, Consider

\rm \: \dfrac{1}{x}  \\

\rm \:  =  \: \dfrac{1}{2 +  \sqrt{3} }  \\

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{2 +  \sqrt{3} } \times  \frac{2 -  \sqrt{3} }{2 +  \sqrt{3} }   \\

We know,

\boxed{ \rm{ \:(x + y)(x - y) =  {x}^{2} -  {y}^{2} \: }} \\

So, using this identity, we get

\rm \:  =  \: \dfrac{2 -  \sqrt{3} }{ {2}^{2}  -  {( \sqrt{3} )}^{2} }  \\

\rm \:  =  \: \dfrac{2 -  \sqrt{3} }{4 - 3}  \\

\rm \:  =  \: \dfrac{2 -  \sqrt{3} }{1}  \\

\rm \:  =  \: 2 -  \sqrt{3}  \\

\rm\implies \: \frac{1}{x}  =  \: 2 -  \sqrt{3}  \\

Now, Consider

\rm \:  {x}^{2} +  \dfrac{1}{ {x}^{2} }  \\

\rm \:  =  \:  {x}^{2} +  {\bigg(\dfrac{1}{x} \bigg) }^{2}

\rm \:  =  \:  {(2 +  \sqrt{3} )}^{2} +  {(2 -  \sqrt{3}) }^{2}  \\

We know,

\boxed{ \rm{ \: {(x + y)}^{2} +  {(x - y)}^{2} = 2( {x}^{2} +  {y}^{2}) \: }} \\

So, using this identity, we get

\rm \:  =  \: 2( {2}^{2} +  {( \sqrt{3}) }^{2} ) \\

\rm \:  =  \: 2(4 + 3) \\

\rm \:  =  \: 2 \times 7 \\

\rm \:  =  \: 14 \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \:  {x}^{2} +  \dfrac{1}{ {x}^{2} } = 14   \:  \: }}\\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions