Math, asked by SwaggerGabru, 10 months ago

Here's Your "SwaggerGabru"

Harsh Pratap Singh :)

QUESTION :-
__________________

Solve the problem in the attachment.

__________________

Note :-
Spammed answer will be deleted ✔️
Giving copied answer is restricted ❎
Answer should be easy to understand

Attachments:

Answers

Answered by BRAINLYADDICTOR
93

★FIND:

★FIND:

➡️log(f(e^x))

★GIVEN,

f(1)=4 and f'(1)=2

★SOLUTION:

Let,

y=log(f(e^x))

dy/dx=dy/dx(log(f(e^x))

dy/dx=1/f(e^x).f'(e^x).e^x

dy/dx=f'(e^x)/f(e^x).e^x

dy/dx(x=0)=f'(e°)/f(e°).e°

=f'(1)/f(1).1

=2/4

=1/2

Answered by Anonymous
3

 \tt \huge \red{answer :  - } \\  \\  \tt \: given :  \\   \star \sf \: f(1) = 4 \\ \star \sf \:f'(1) = 2 \\  \\ solution :  -  \\  \\ let \:  \\  \sf \: y = log \: (f( {e}^{x} )) \\  \\  \sf \:  \frac{dy}{dx}  =  \frac{dy}{dx} log \: (f( {e}^{x} )) \\  \\  \sf \:  \frac{dy}{dx}  =  \frac{1}{f {(e}^{x} )} .f'( {e}^{x} ). {e}^{x}  \\  \\ \sf \:  \frac{dy}{dx}  = \frac{f' {(e}^{x} ) }{f {(e}^{x} ). {e}^{x} }  \\  \\ \sf \:  \frac{dy}{dx} (x =0) =  \frac{f'(e \degree)}{f(e \degree)} .e \degree =  \frac{2}{4}  =  \frac{1}{2}

Similar questions