heron's formula find the area of trapezium whose two parallel sides are 60 cm and 77 cm and the other side the 25 cm and 26 CM
Answers
Given
- The 2 parallel sides of trapezium are
- PS=77cm and QR=60cm
- The other sides are
- PQ=25cm and RS=26cm
Here, QU and RT is joining
∴QR=UT=60cm
Now,
- In right angle ∆RTS
- RT²=RS²-TS²
⟹RT²=26²-(17-x)²
⟹here , RT=QU
⟹25²-x²=26²-(17²-33x+x²)
⟹625-x²=676-189+34x-x²
⟹625=387+34x
⟹625-387=34x
⟹238=34x
⟹x=7cm
Thus
⟹UQ=√25²-x²
⟹UQ=√625-49
⟹UQ=√576
⟹UQ=24cm
Hence,
⟹Area of trapezium=1/2*(sum of parall sides)* height
⟹Area of trapezium=1/2*(77+60)*24
⟹Area of trapezium=1/2*137*24
⟹Area of trapezium=137*12
⟹Area of trapezium=1644cm²
Answer:-
Draw a line BC parallel to AD
Draw a perpendicular line BE on DF
ABCD is a parallelogram.
BC=AD=25cm
CD=AB=60cm
CF=77-CD=17cm
For Δ BCF
perimeter of triangle=(25+26+17)/2
=68/2=34
By Heron's Formula of triangle=√s(s-a)(s-b)(s-c)
=√34(34-25)(34-26)(34-17)
=204cm²
Now area of ΔBCF=1/2xbase x height
=1/2 BExCF204cm²
=1/2x BEx17BE
=408/17
=24cm
Area of Trapezium =1/2(AB+DF)xBE
=1/2(60+77)x24
=1644cm²
Hence the area of trapezium is 1644cm².