Math, asked by ananyaq, 1 year ago

Hey!___96 points___
plss plsss solve it...........

Attachments:

Answers

Answered by NikkiTomar
5

Step-by-step explanation:

Taking LHS :

  \frac{ \sin(2x) -  \sin(3x) +  \sin(4x)   }{ \cos(2x)  -  \cos(3x)  +  \cos(4x) }

[note that:

 \frac{2x + 4x}{2}  = 3x

 =  >  \frac{( \sin(2x )+ \sin(4x)   -  \sin(3x) ) }{( \cos(2x) +  \cos(4x)  -  \cos(3x)  }

Also we know that:

sin(A+B) = 2sin((A+B)/2)cos((A-B)/2)

=>cos(A+B) = 2 cos((A+B) /2)cos(A-B)/2)

 =  >  \frac{2 \sin( \frac{2x + 4x}{2}  ) \times  \cos( \frac{2x - 4x}{2} )  -  \sin(3x)  }{2 \cos( \frac{2x + 4x}{2} )  \times  \cos( \frac{2x - 4x}{2} )  -  \cos(3x) }

 =  >  \frac{2 \sin(3x) \times  \cos( - x)   -  \sin(3x) }{2 \cos(3x) \times  \cos( - x) -  \cos(3x)   }

 =  >  \frac{ \sin(3x))(2 \cos(x) - 1))  }{ \cos(3x)((2 \cos(x) - 1 )) }

Now the same term will cancel out therefore :

 =  >  \frac{ \sin(3x) }{ \cos(3x) }

=> tan3x = RHS

Hence proved!

HOPE IT HELPS YOU


ananyaq: ohk dude
ananyaq: thanks alot
Similar questions