Math, asked by anglevanshi, 1 year ago

hey............... ❤️ ❤️ ❤️ ❤️.... ​

Attachments:

Answers

Answered by gujjarankit
1

hope u find it helpful

Attachments:

humamirza2013: I dont understand that
gujjarankit: whole question is not understandable or some part of it
humamirza2013: Whole
gujjarankit: in ur question no.4 frst rationalise it
gujjarankit: to find x^2+1/x^2 put the formula of a^2 + b^2
Answered by FelisFelis
0

Answer:

x^{2}+\frac{1}{x^{2}}= 14 and x^{2}-\frac{1}{x^{2}}= 10

Step-by-step explanation:

In 4) Given x= 2 + \sqrt{3}

we need to find x^{2}+\frac{1}{x^{2}} and x^{2}-\frac{1}{x^{2}}

If x =2 + \sqrt{3}

then to find \frac{1}{x}

Rationalize the \frac{1}{x}= \frac{1}{2 + \sqrt{3}}

\frac{1}{x}= \frac{1}{2 + \sqrt{3}} \times \frac{2 - \sqrt{3}}{2 - \sqrt{3}}

x= \frac{2-\sqrt{3}}{(2)^{2}-(\sqrt{3})^{2}}

x= \frac{2-\sqrt{3}}{4-3}

x= 2-\sqrt{3}

Now, find x^{2}+\frac{1}{x^{2}}

Since, (a+b)^{2} -2ab= a^{2} + b^{2}

so,  x^{2}+\frac{1}{x^{2}} = (x+\frac{1}{x})^{2}-2

= (2 + \sqrt{3}+2 - \sqrt{3})^{2}-2

= (2 +2)^{2}-2

= (4)^{2}-2

= 16-2

= 14

Hence, x^{2}+\frac{1}{x^{2}}= 14

Now, find x^{2}-\frac{1}{x^{2}}

Since, (a-b)^{2} +2ab= a^{2} + b^{2}

so,  x^{2}-\frac{1}{x^{2}} = (x+\frac{1}{x})^{2}+2

= (2 + \sqrt{3}-2 + \sqrt{3})^{2}-2

= (2\sqrt{3})^{2}-2

= 12-2

= 10

Hence, x^{2}-\frac{1}{x^{2}}= 10

Similar questions