Hey All !
Let the roots of ax^2 + 2bx + c = 0 are p and q .
Also, the roots of Ax^2 +2Bx+C =0 are p+r and q+r.
Prove that A^2(b^2-ac) = a^2(B^2-AC).
Its a class 10th ques...
Answers
Gɪᴠᴇɴ :-
- Roots of ax^2 + 2bx + c = 0 are p and q .
- Roots of Ax^2 +2Bx+C =0 are p+r and q+r.
To Prove :-
- A^2(b^2-ac) = a^2(B^2-AC)
Fᴏʀᴍᴜʟᴀ ᴜsᴇᴅ :-
- The sum of the roots of the Equation ax² + bx + c = 0 , is given by = (-b/a)
- Product of roots of the Equation is given by = c/a.
- (x - y)² = (x + y)² - 4xy
Sᴏʟᴜᴛɪᴏɴ :-
Given That, Roots of ax^2 + 2bx + c = 0 are p and q.
So ,
→ p + q = (-2b/a)
→ pq = c/a
And,
→ (p - q)² = (p + q)² - 4pq
Putting Both Values now,
→ (p - q)² = [(-2b/a)]² - 4(c/a)
→ (p - q)² = (4b²/a²) - (4c/a)
→ (p - q)² = (4b² - 4ac) / a²
→ (p - q)² = 4(b² - ac) / a² ------------ Equation (1)
____________________
Now,
We have also given That, Roots of Ax^2 +2Bx+C =0 are p+r and q+r.
So ,
→ (p + r) + (q + r) = (-2B/A)
→ (p + r) * (q + r) = (C/A)
Again using , (x - y)² = (x + y)² - 4xy we get,
→ [(p + r) - (q + r)]² = (-2B/A)² - 4(C/A)
→ [ p + r - q - r ]² = (4B²/A²) - (4C/A)
→ (p - q)² = (4B² - 4AC) / A²
→ (p - q)² = 4(B² - AC) / A² ------------ Equation (2) .
____________________
Now , Comparing Both Equation , we get ,
→ Equation (1) = Equation (2) = (p - q)²
Or,
→ 4(b² - ac) / a² = 4(B² - AC) / A²
→ A²(b² - ac) = a²(B² - AC) (Hence, Proved).
⭐Let the roots of ax^2 + 2bx + c = 0 are p and q .
Also, the roots of Ax^2 +2Bx+C =0 are p+r and q+r.
Prove that A^2(b^2-ac) = a^2(B^2-AC).
✔
✅Roots of ax^2 + 2bx + c = 0 are p and q .
✅Roots of Ax^2 +2Bx+C =0 are p+r and q+r.
✔
⭐A^2(b^2-ac) = a^2(B^2-AC)
Now we know that:
✅sum of the roots = (-b/a)
✅Product of roots = c/a.
(x - y)² = (x + y)² - 4xy
✔
✅ Roots of ax^2 + 2bx + c = 0 are p and q:
=》p + q = (-2b/a)
=》 pq = c/a
Also,
=》 (p - q)² = (p + q)² - 4pq
✔Substituting the values:
=》 (p - q)² = [(-2b/a)]² - 4(c/a)
=》 (p - q)² = (4b²/a²) - (4c/a)
=》 (p - q)² = (4b² - 4ac) / a²
=》 (p - q)² = 4(b² - ac) / a² ----------(1)
✔Also, Roots of Ax^2 + 2Bx+C =0 are p+r and q+r :-
=》 (p + r) + (q + r) = (-2B/A)
=》 (p + r) * (q + r) = (C/A)
Now using , (x - y)² = (x + y)² - 4xy :-
=》 [(p + r) - (q + r)]² = (-2B/A)² - 4(C/A)
=》 [ p + r - q - r ]² = (4B²/A²) - (4C/A)
=》 (p - q)² = (4B² - 4AC) / A²
=》 (p - q)² = 4(B² - AC) / A² ----------(2)
✔Comparing (1) and (2) :
(1) = (2) = (p-q)²
⭐ 4(b² - ac) / a² = 4(B² - AC) / A²
⭐A²(b² - ac) = a²(B² - AC)
✅Hope it helps you :)
#Regards❤