Social Sciences, asked by Anonymous, 11 months ago

Hey All


Provide me the solution of this question.

Dont spam​

Attachments:

Answers

Answered by shadowsabers03
35

Given,

\longrightarrow\sf{f(x)=\tan^{-1}\left(\dfrac{\sqrt{1+x^2}-1}{x}\right)}

Here we can find \sf{f(x)} is not defined for \sf{x=0,} but has limit.

\displaystyle\longrightarrow\sf{\lim_{x\to0}\,\tan^{-1}\left(\dfrac{\sqrt{1+x^2}-1}{x}\right)=\tan^{-1}\left(\lim_{x\to0}\dfrac{\sqrt{1+x^2}-1}{x}\right)}

By L'hospital's Rule,

\displaystyle\longrightarrow\sf{\lim_{x\to0}\,\tan^{-1}\left(\dfrac{\sqrt{1+x^2}-1}{x}\right)=\tan^{-1}\left(\lim_{x\to0}\dfrac{x}{\sqrt{1+x^2}}\right)}

\displaystyle\longrightarrow\sf{\lim_{x\to0}\,\tan^{-1}\left(\dfrac{\sqrt{1+x^2}-1}{x}\right)=0}

\displaystyle\longrightarrow\sf{\lim_{x\to0}f(x)=0}

We can see \sf{f(x)} is an odd function.

\longrightarrow\sf{f(-x)=\tan^{-1}\left(\dfrac{\sqrt{1+(-x)^2}-1}{-x}\right)}

\longrightarrow\sf{f(-x)=\tan^{-1}\left(-\dfrac{\sqrt{1+x^2}-1}{x}\right)}

\longrightarrow\sf{f(-x)=-\tan^{-1}\left(\dfrac{\sqrt{1+x^2}-1}{x}\right)}

\longrightarrow\sf{f(-x)=-f(x)}

Let's check about the nature of \sf{f(x).}

\longrightarrow\sf{f'(x)=\dfrac{d}{dx}\,\left[\tan^{-1}\left(\dfrac{\sqrt{1+x^2}-1}{x}\right)\right]}

\longrightarrow\sf{f'(x)=\dfrac{1}{\left(\dfrac{\sqrt{1+x^2}-1}{x}\right)^2+1}\cdot\dfrac{\dfrac{x^2}{\sqrt{1+x^2}}-\sqrt{1+x^2}+1}{x^2}}

\longrightarrow\sf{f'(x)=\dfrac{\dfrac{x^2}{\sqrt{1+x^2}}-\sqrt{1+x^2}+1}{x^2\left(\dfrac{\sqrt{1+x^2}-1}{x}\right)^2+x^2}}

\longrightarrow\sf{f'(x)=\dfrac{1-\dfrac{1}{\sqrt{1+x^2}}}{\left(\sqrt{1+x^2}-1\right)^2+x^2}}

\longrightarrow\sf{f'(x)=\dfrac{\sqrt{1+x^2}-1}{\left(2(1+x^2)-2\sqrt{1+x^2}\right)\sqrt{1+x^2}}}

\longrightarrow\sf{f'(x)=\dfrac{\sqrt{1+x^2}-1}{2\sqrt{1+x^2}\left(\sqrt{1+x^2}-1\right)\sqrt{1+x^2}}}

\longrightarrow\sf{f'(x)=\dfrac{1}{2(1+x^2)}}

Here we get \sf{f'(x),} having domain \mathbb{R,} is always positive for every values of \sf{x.}

Therefore, \sf{f(x)} is a strictly increasing function.

Finding limit of \sf{f(x)} as \sf{x} tends to infinity,

\displaystyle\longrightarrow\sf{\lim_{x\to\infty}\,\tan^{-1}\left(\dfrac{\sqrt{1+x^2}-1}{x}\right)=\tan^{-1}\left(\lim_{x\to\infty}\dfrac{\sqrt{1+x^2}-1}{x}\right)}

By L'hospital's Rule,

\displaystyle\longrightarrow\sf{\lim_{x\to\infty}\,\tan^{-1}\left(\dfrac{\sqrt{1+x^2}-1}{x}\right)=\tan^{-1}\left(\lim_{x\to\infty}\dfrac{x}{\sqrt{1+x^2}}\right)}

\displaystyle\longrightarrow\sf{\lim_{x\to\infty}\,\tan^{-1}\left(\dfrac{\sqrt{1+x^2}-1}{x}\right)=\tan^{-1}\left(\lim_{x\to\infty}\sqrt{\dfrac{x^2}{1+x^2}}\right)}

\displaystyle\longrightarrow\sf{\lim_{x\to\infty}\,\tan^{-1}\left(\dfrac{\sqrt{1+x^2}-1}{x}\right)=\tan^{-1}\sqrt{\lim_{x\to\infty}\dfrac{x^2}{1+x^2}}}

Again by L'hospitals rule,

\displaystyle\longrightarrow\sf{\lim_{x\to\infty}\,\tan^{-1}\left(\dfrac{\sqrt{1+x^2}-1}{x}\right)=\tan^{-1}\sqrt{\lim_{x\to\infty}\dfrac{2x}{2x}}}

\displaystyle\longrightarrow\sf{\lim_{x\to\infty}\,\tan^{-1}\left(\dfrac{\sqrt{1+x^2}-1}{x}\right)=\tan^{-1}\sqrt{\lim_{x\to\infty}1}}

\displaystyle\longrightarrow\sf{\lim_{x\to\infty}\,\tan^{-1}\left(\dfrac{\sqrt{1+x^2}-1}{x}\right)=\tan^{-1}\left(1\right)}

\displaystyle\longrightarrow\sf{\lim_{x\to\infty}\,\tan^{-1}\left(\dfrac{\sqrt{1+x^2}-1}{x}\right)=\dfrac{\pi}{4}}

\displaystyle\longrightarrow\sf{\lim_{x\to\infty}f(x)=\dfrac{\pi}{4}}

Hence, since the function is strictly increasing,

\longrightarrow\sf{For\quad x\in(0,\ \infty),\quad f(x)\in\left(0,\ \dfrac{\pi}{4}\right)}

And since the function is odd,

\longrightarrow\sf{For\quad x\in(-\infty,\ 0),\quad f(x)\in\left(-\dfrac{\pi}{4},\ 0\right)}

Hence the range of \sf{f(x)} is,

\displaystyle\longrightarrow\sf{f(x)\in\left(-\dfrac{\pi}{4},\ 0\right)\cup\left(0,\ \dfrac{\pi}{4}\right)}

\displaystyle\longrightarrow\sf{\underline{\underline{f(x)\in\left(-\dfrac{\pi}{4},\ \dfrac{\pi}{4}\right)-\{0\}}}}

Hence (b) is the answer.

Similar questions