Math, asked by mini0999, 9 months ago

hey

answer it plzzzzzzzxx​

Attachments:

Answers

Answered by BrainlyConqueror0901
6

# Question :

 \tt If \: 3 +  \frac{ ({7})^{ \frac{1}{2} } }{3}  - ( {7})^{ \frac{1}{2} }  = a + b {(7)}^{ \frac{1}{2} }  \: then \: (a,b)  \: is

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:(a,b)=(3,\frac{-2}{3})}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies 3 +  \frac{ {(7)}^{ \frac{1}{2} } }{3}  -  {(7)}^{ \frac{1}{2} }  = a + b {(7)}^{ \frac{1}{2} }   \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Value \: of \: (a,b)=?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies 3 +  \frac{ {(7)}^{ \frac{1}{2} } }{3}  -  {(7)}^{ \frac{1}{2} }  = a + b {(7)}^{ \frac{1}{2} }  \\  \\ \tt:  \implies 3 +  \frac{ \sqrt{7} }{3}  -  \sqrt{7}  = a + b \sqrt{7}  \\  \\ \text{Taking \: lcm :  }\\  \tt:  \implies   \frac{3 \times 3  +  \sqrt{7} - 3 \times  \sqrt{7}  }{3}  = a + b \sqrt{7}  \\  \\ \tt:  \implies  \frac{9 +  \sqrt{7} - 3 \sqrt{7}  }{3}  = a + b \sqrt{7}  \\  \\ \tt:  \implies  \frac{9 - 2 \sqrt{7} }{3}  = a + b \sqrt{7}  \\  \\ \tt:  \implies  \frac{9}{3}   + ( \frac{ - 2 \sqrt{7} }{3} ) = a + b \sqrt{7}  \\  \\ \tt:  \implies 3 + ( \frac{ - 2 \sqrt{7} }{3} ) = a + b \sqrt{7}  \\  \\  \text{On \: comparing \: both \: sides : } \\ \green{\tt:  \implies a = 3} \\  \\  \tt:  \implies b \sqrt{7}  =  \frac{ - 2 \sqrt{7} }{3}  \\  \\ \tt:  \implies b =  \frac{ - 2 \sqrt{7} }{3 \sqrt{7} }  \\  \\  \green{\tt:  \implies b =  \frac{ - 2}{3} }

Answered by Anonymous
19

 <marquee Scrollamount =1300 > I hope it's helps you</marquee >

Attachments:
Similar questions