Math, asked by payal138, 1 year ago

hey answer my question...........

A rhombus of side 20 cm has two angles 60° each. So find the length of the diagonals.

Answers

Answered by siddhartharao77
3
Given the length of the first diagonal  = 20cm.

(1) Shorter Diagonal(d1):

= \ \textgreater \   \sqrt{a^2 + b^2 - 2abcos(60)}

= \ \textgreater \   \sqrt{(20)^2 + (20)^2 - 2(20)(20) *  \frac{1}{2} }

= \ \textgreater \   \sqrt{400 + 400 - 800 *  \frac{1}{2} }

= \ \textgreater \ \sqrt{800 - 400}

= \ \textgreater \ \sqrt{400}

= \ \textgreater \ 20


(2) Longer Diagonal(d2):

= \ \textgreater \ \sqrt{(a)^2 + (b)^2 - 2abcos(120)}

= \ \textgreater \ \sqrt{(20)^2 + (20)^2 - 2 * 20 * 20(- \frac{1}{2}) }

= \ \textgreater \ \sqrt{400 + 400 - 800 * \frac{-1}{2} }

= \ \textgreater \ \sqrt{400 + 400 + 400}

= \ \textgreater \ \sqrt{1200}

= \ \textgreater \ 20 \sqrt{3}



Therefore the length of the diagonals are: 20, 20 \sqrt{3}


Hope this helps!

siddhartharao77: :-)
Similar questions