Science, asked by Anonymous, 9 months ago

★ Hey Brainlies ★

Check-out the provided attachment :-

• Solve it with Proper steps...
• Required Verified Answer...
• Best will Get Brainiest Mark...

★ Civil Being Here ★

Attachments:

Answers

Answered by amansharma264
33

EXPLANATION.

An ideal gas has a specific heat at a

constant pressure = Cp = (5/2) R

The gas kept in a close vessels of volume

=> 0.0083 m³.

=> Temperature = 300 k

=> pressure = 1.6 X 10^6 Nm^-2

=> an amount of 2.49 X 10^4 j of heat energy

is supplied to the gas.

To find the final temperature and

pressure of the gas.

According to the question,

 \rm \to \:  c_{v} \:  =  \:  c_{p} \:  -  \: r \\  \\  \rm \to \:  c_{v} \:  =  \frac{5}{2} r \:  - r \\  \\  \rm \to \:  c_{v} \:  =  \frac{3r}{2}  = 1.5r \\  \\  \rm \to \: as \: we \: know \: that \\  \\  \rm \to \: pv \:  = nrt \\  \\  \rm \to \: n \:  =  \frac{pv}{rt}  \\  \\  \rm \to \: put \: the \: value \: in \: equation \\  \\  \rm \to \: n \:  =  \frac{(1.6  \times 10 {}^{6}nm {}^{ - 2}  ) \times  \: (0.0083m {}^{3} )}{(8.314 \: j \: k {}^{ - 1}mol {}^{ - 1}  ) \times (300k)}  \\  \\  \rm \to \: n \:  = 5.33 \: mol \\  \\  \rm \to \: as the \: gas \: kept \: in \: the \: vessels \\  \\  \rm \to \:  \Delta \: Q \:  = n c_{v}\Delta \: t \\  \\  \rm \to \: \Delta \: t \:  =  \frac{\Delta \:  Q}{n c_{v} }  \\  \\  \rm \to \:  \frac{(2.49 \times 10 {}^{4}j) }{(5.33 \: mol) \times (1.5 \:  \times 8.314 \: j \: k {}^{ - 1} mol {}^{ - 1}) } = 377 \\  \\  \rm \to \: \Delta \: t \:  = 300k \\  \\  \rm \to \: final \: temperature \:  = 300 + 377 = 667k \\  \\  \rm \to \: as \: we \: know \: that \\  \\  \rm \to \:  \frac{ p_{1} v_{1}  }{ t_{1}}  =  \frac{ p_{2} v_{2}}{ t_{2}}   \\  \\   \rm \to \: volume \: is \: equal \:  \\  \\   \rm \to \:  v_{1} \:  =  \:   v_{2} \\  \\  \rm \to \:  p_{2} \:  = \:  \frac{ t_{2}p_{1} }{ t_{1} }  \\  \\  \rm \to \:  p_{2} \:  =  \frac{677}{300}  \times 1.6 \times 10 {}^{6} nm {}^{ - 2}    \\  \\  \rm \to \:  p_{2} \:  = 3.6 \times 10 {}^{6}  nm {}^{ - 2}

Answered by sk181231
4

Answer:

v{}{1 = v \frac{}{2} }

p2 =  \frac{t2p1}{t1}

p2 = 3.6  \times 10 {}^{6} nm {}^{ - 2}

Similar questions