Math, asked by beautiful68, 1 year ago

※ HEY BUDDIES ※ I am with a trigonometry question here : Prove that ( Sin A + Cosec A ) ² + ( Cos A + Sec A ) ² = ( 7 Tan ² A + Cot ² A ) Please solve it friends , I need it for my exam !!

Thanks in advance ☺
@Beautiful68 !!

Answers

Answered by MOSFET01
13
\bold{\large{\underline{Hey\: mate \:! }}}

\bold{\large{\underline{Solution\: \colon}}}

 \bold{\large{\underline{Revise \: formulae \: \colon}}}

------------------------------------------------------------------------------------------------------------------

\bold{\large{1) \: cos^{2} \: \theta + sin^{2}\: \theta \: = \: 1}}

 \bold{\large{2) \: cosec\: \theta = \frac{1}{sin\: \theta}}}

 \bold{\large{3) \: sec \: \theta = \frac{1}{cos\: \theta}}}

 \bold{\large{4) \: 1 + cot^{2}\: \theta = cosec^{2}\: \theta}}

\bold{\large{ 5) \: 1 + tan^{2} \: \theta = tan^{2}\: \theta }}

------------------------------------------------------------------------------------------------------------------

 \bold{\large{Q) \: (sin\: A +cosec\: A )^{2} + (cos\: A + sec\: A )^{2} = 7 + tan^{2} A + cot^{2} A}}

------------------------------------------------------------------------------------------------------------------

\bold{\underline{Take\: LHS \: \colon}}

Use ( a + b )² = a² + b² +2 ab

 \implies \bold{\large{( sin^{2}\: A + cosec^{2} \: A + 2 sin \: A . cosec \: A ) + ( cos^{2}\: A + sec^{2} \: A + 2 cos \: A . Sec \: A )}}

Use formula 2 & 3

 \implies \bold{\large{[ sin^{2}\: A + cos^{2} \: A ] + [ cosec^{2}\: A + sec^{2}\: A] +[2\frac{sin\: A }{sin\: A } + 2\frac{cos\: A }{cos\: A }]}}

After applying formula (1)

\implies \bold{\large{ [1] \: + \: 2 +\: 2 + [ cosec^{2} A \: + \: sec^{2} \: A ]}}

Apply formula (4) & (5)

\implies \bold{\large{[5] \: + \: [ ( 1 \: + \: cot^{2} \: A ) + ( 1\: + tan^{2} \: A ) ]}}

\implies \bold{\large{ [ 5 \: +\: 1 \: + \: 1 ] + tan^{2} \: A\: + \: cot^{2} \: A }}

\implies \bold{\large{ [ 7 ] \: + \: tan^{2} \: A \: + \: cot^{2} \: A }}

 \implies \bold{\large{7 \: + \: tan^{2} \: A \: + \: cot^{2} \: A }}

------------------------------------------------------------------------------------------------------------------

\bold{\large{\boxed{ LHS \: = \: RHS }}}

------------------------------------------------------------------------------------------------------------------

Error in your RHS please correct it

\bold{\large{ Thanks}}

Anonymous: Beautifully answered
crystinia: Awesome!!
MOSFET01: :-)
beautiful68: Thanks a lot dude !!
MOSFET01: :)
beautiful68: (^_^)
Answered by isha133846
0

Answer:

how do you verify answers??

Similar questions