Math, asked by Anonymous, 4 months ago

Hey dear Brainly stars and mods :)
Question for you :-

★ PROVE :
(secø - cosø)(cotø+tanø) = tanø secø

• Quality answer expected ✔️
• No spam and unwanted answers ❌​

Answers

Answered by Ataraxia
19

To Prove :-

\sf (sec \theta - cos \theta )(cot \theta + tan \theta ) = tan \theta + sec \theta

Solution :-

\sf L.H.S = (sec \theta - cos \theta )( cot \theta + tan \theta )

\bullet \bf \ sec \theta = \dfrac{1}{cos \theta } \\\\\bullet \bf \  cot \theta = \dfrac{cos \theta }{sin \theta } \\\\\bullet \bf \  tan \theta = \dfrac{sin \theta }{cos \theta }

        = \sf \left( \dfrac{1}{cos \theta } - cos \theta  \right) \left( \dfrac{cos \theta }{sin \theta } +\dfrac{sin \theta }{cos \theta } \right) \\\\= \left( \dfrac{1 - cos^2 \theta }{cos\theta } \right) \left( \dfrac{cos^2 \theta + sin^2 \theta }{sin \theta cos \theta } \right)

\bullet \bf \ cos^2 \theta + sin^2 \theta = 1

\bullet \bf \ 1- cos^2 \theta = sin^2 \theta

          = \sf  \dfrac{sin^2 \theta } {cos \theta } \times \dfrac{1}{sin \theta cos \theta }\\\\= \dfrac{sin \theta }{cos^2 \theta } \\\\= \dfrac{sin \theta }{cos \theta } \times \dfrac{1}{cos \theta }\\\\= tan \theta sec \theta \\\\= R.H.S

Hence proved.

Answered by Anonymous
31

Given :

  • (secø - cosø)(cotø+tanø) = tanø secø

To Prove :

  • (secø - cosø)(cotø+tanø) = tanø secø

Solution :

\\   \sf \: : \implies \:  \:  \:  \:  \:  \:  \:  \: { \large{( \sec(a) - \cos(a) )( \cot(a) + \tan(a) = \tan(a) \times \sec(a) ) }} \\ \\  \\  \sf \: : \implies \:  \:  \:  \:  \:  \:  \:  \: { \large{( \frac{1}{ \cos(a) } - \cos(a) )( \frac{ \cos(a) }{ \sin(a) } + \frac{ \sin(a) }{ \cos(a) } )}}  \\  \\  \\  \sf \: : \implies \:  \:  \:  \:  \:  \:  \:  \:{ \large{ \frac{1 - { \cos {}^{2} (a) }^{} }{ \cos(a) } \times \frac{ \cos {}^{2} (a) + \sin {}^{2} (a) }{ \cos(a) \times \sin(a) } }} \\ \\  \\   \sf \: : \implies \:  \:  \:  \:  \:  \:  \:  \:{ \large{ \frac{ \sin {}^{2} (a) }{ \cos(a) } \times \frac{1}{ \cos(a) \sin(a) } }} \\ \\  \\  \\  \sf \: : \implies \:  \:  \:  \:  \:  \:  \:  \:{ \large{ \frac{ \sin(a) }{ \cos(a) } \times \frac{1}{ \cos(a) } }} \\ \\  \\   \sf \: : \implies \:  \:  \:  \:  \:  \:  \:  \:{ \large{ \tan(a) \times \sec(a) }} \\ \\  \\

______________________

\boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}

Similar questions