hey, does anyone know ques - 3 , 7 and 8 . please answer me its urgent
Answers
Answer:
Step-by-step explanation:
Answer-3 and 7
Answer:
Step-by-step explanation:
---------------------------
3) cos A = sin A / tan A
= (m sin B) / (n tan B)
=> n cos A = m (sin B / tan B) = m cos B
n² cos² A + sin² A = m² cos² B + m² sin² B = m² ( cos² B + sin² B ) = m²
=> (n²-1) cos² A + cos² A + sin² A = m²
=> (n²-1) cos² A + 1 = m²
=> cos² A = (m²-1) / (n²-1)
-------------------------
7)
Let the numbers be a, a+d, a+2d, a+3d.
Given: 4a+6d = 32 => 2a + 3d = 16 => 2a = 16 - 3d ... (1)
Given: a(a+3d) / (a+d)(a+2d) = 7 / 15
=> 15a(a+3d) = 7(a+d)(a+2d)
=> 15a² + 45ad = 7a² + 21ad + 14d²
=> 8a² + 24ad = 14d²
=> 4a² + 12ad = 7d²
=> (2a)² + 6(2a)d = 7d² [ now use equation (1)... ]
=> (16-3d)² + 6d(16-3d) = 7d²
=> 256 - 96d + 9d² + 96d - 18d² = 7d²
=> 256 = 16d²
=> d² = 16
=> d = ±4
Can take d = 4 since using d = -4 will be the same numbers but in reverse order.
From (1),
a = (16-3d)/2 = (16-12)/2 = 4/2 = 2
So the numbers are:
2, 6, 10, 14
--------------------------------
8)
Let a be the first term and d the common difference.
Given:
m-th term = 1/n <=> a + (m-1)d = 1/n
n-th term = 1/m <=> a + (n-1)d = 1/m
Assume m ≠ n, otherwise the claim in the problem isn't even true!
Subtracting one equation above from the other gives
(m-n)d = 1/n - 1/m = (m-n) / mn
=> d = 1 / mn [ can divide by (m-n) since m ≠ n ]
Using one of the equations above gives
a = 1/n - (m-1)d = 1/n - (m-1)/mn = 1/n - 1/n + 1/mn = 1 / mn
The sum of the first mn terms is
mna + mn(mn-1)d/2
= 1 + (mnd) (mn-1)/2
= 1 + (mn-1)/2
= (2+mn-1)/2
= (mn+1) / 2