Math, asked by MysteriesGirl, 5 hours ago

Hey


Find The Point on The X - axis which is equidistant from the A (-3,4) and B (1,-4) .



Plz Give Correct and explained answer.​

Answers

Answered by tname3345
8

Step-by-step explanation:

topic :

  • equidistant

given :

  • the point on the x - axis

  • equidistant from the = A (-3,4) and B (1,-4) .

to find :

  • Find The Point on The X - axis

solution :

 \sqrt (a (-3))² + (0 − 4)² \\  \\  \\  \\  \\  \\  = \sqrt  (a + 3)² + 16 \\  \\  \\  \\  \\  \\  \\  = (a − 1)² + (0-(-4))² \\  \\  \\  \\  = √(a − 1)² + 16 \\  \\  \\  \\  \\  \\  \\  = ⇒ (a + 3)² + 16 = (a − 1)² + 16 \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  = a² + 6a+9 = a² - 2a + 1 \\  \\  \\   = ⇒8a = -8 \\  \\  \\  \\  \\  \\  \\  = ⇒a=-1 \\  \\  \\  \\  \\  \\  \\  = (a,0) = (-1,0)</p><p></p><p>

thus , the answer is (a,0) = (-1,0)

Answered by XxitzZBrainlyStarxX
19

Question:-

Find The Point on The X - axis which is equidistant from the A (-3,4) and B (1,-4) .

Given:-

● The point on X - axis.

● Equidistant from the A = (– 3,4) and B = (1,– 4).

Solution:-

 \sf \red{Distance \:  Formula =  \sqrt{{(x{ \sf{{_{2}}}}}   \sf -x { \sf{{_{1}}}} \sf) {}^{2} + (y { \sf{{_{2}}}} -{y \sf{{_{1}}}} ) {}^{2} }}

Let, the required point is C (x,0).

 \sf AC =  \sqrt{x - ( - 3) {}^{2} + (0 - 4) {}^{2}  }

 \sf  =  \sqrt{(x + 3) {}^{2}  + ( - 4) {}^{2} }

 \sf =  \sqrt{x {}^{2} + 9 + 6x + 16 }

 \sf =  \sqrt{x {}^{2} + 6x + 25 }

 \sf BC =  \sqrt{(x - 1) {}^{2}  + (0 - ( - 4)) {}^{2} }

 \sf =  \sqrt{x {}^{2} + 1 - 2x + (4)  {}^{2} }

 \sf =  \sqrt{x {}^{2}  - 2x + 17}

According to the Question.

AC = BC

 \sf \sqrt{x {}^{2}  + 6x + 25}  =  \sqrt{x {}^{2} - 2x + 17 }

Squaring on both Sides.

 \sf {{ \cancel{x {}^{2} }}} + 6x + 25 =  {{ \cancel{x {}^{2}}}}  - 2x + 17

 \sf6x + 2x = 17 - 25

 \sf8x =  - 8

 \sf x = \: {{ \cancel{  \frac{ - 8}{8} }}} =  - 1

Answer:-

 \sf \fbox \red{Required Point is  (–1,0)}

Hope you have satisfied.

Similar questions