Chinese, asked by BRAINLYGAMER, 9 months ago

Hey find x in the figure.
IT'S not a easy geometric problem it's the hardest ​

Attachments:

Answers

Answered by AyushSehrawat
4

Hey there

Mark as BRAINLIST

If it helps you

Let's start

This is the one of the hardest easy looking geometric problem and i have got the solution for you

You need to do construction in it orelse you won't be able to do this question

Firstly we will calculate

some known angles:such as below ones

ACB = 180-(10+70)-(60+20) = 20 degree

AEB = 180-60-(50+30) = 40 degree

2. Draw a line from point E parallel to AB, labelling... the intersection with AC as a new point F and conclude:

FCE ACB

CEF = CBA = 50+30 = 80 degree

FEB = 180-80 = 100°

AEF = 100-40 = 60°

CFE = CAB = 60+20 = 80 degree

EFA = 180-80 = 100°

3. Draw a line FB showing the intersection with AE as a new point G and SAY THAT that :

AFE BEF

AFB = BEA = 40 degree

BFE = AEF = 60 degree

FGE = 180-60-60 = 60 degree = AGB.

ABG = 180-60-60 = 60 degree

4. Draw a line DG. Since AD=AB (leg of isosceles) and AG=AB (leg of equilateral), conclude:

AD = AG.

DAG is isosceles

ADG = AGD = (180-20)/2 = 80 degree

5. Since DGF = 180-80-60 = 40 degree, conclude:

FDG (with two 40 degree angles ) is isosceles, so DF = DG

6. With EF = EG (legs of equilateral) and DE = DE (same line segment) WE CAN SAY THAT:

DEF DEG by side-side-side rule

DEF = DEG = x

FEG = 60 = x+x

Answer: x = 30 degree

THERE FORE THE ANSWER IS 30 DEGREE

Answered by Anonymous
3

Answer :D

ACB = 180-(10+70)-(60+20) = 20 degree

AEB = 180-60-(50+30) = 40 degree

2. Draw a line from point E parallel to AB, labelling... the intersection with AC as a new point F and conclude:

FCE ACB

CEF = CBA = 50+30 = 80 degree

FEB = 180-80 = 100°

AEF = 100-40 = 60°

CFE = CAB = 60+20 = 80 degree

EFA = 180-80 = 100°

3. Draw a line FB showing the intersection with AE as a new point G and SAY THAT that :

AFE BEF

AFB = BEA = 40 degree

BFE = AEF = 60 degree

FGE = 180-60-60 = 60 degree = AGB.

ABG = 180-60-60 = 60 degree

4. Draw a line DG. Since AD=AB (leg of isosceles) and AG=AB (leg of equilateral), conclude:

AD = AG.

DAG is isosceles

ADG = AGD = (180-20)/2 = 80 degree

5. Since DGF = 180-80-60 = 40 degree, conclude:

FDG (with two 40 degree angles ) is isosceles, so DF = DG

6. With EF = EG (legs of equilateral) and DE = DE (same line segment) WE CAN SAY THAT:

DEF DEG by side-side-side rule

DEF = DEG = x

FEG = 60 = x+x

Answer: x = 30 degree

THEREFORE THE ANSWER IS 30 DEGREE

</p><p></p><p>&lt;html&gt;</p><p>    &lt;head&gt;</p><p>              &lt;style&gt;</p><p></p><p>                  </p><p>          h1{</p><p>          text-transform:uppercase;</p><p>          margin-top:90px;</p><p>          text-align:center;</p><p>          font-family:Courier new,monospace;</p><p>          border:3px solid rgb(60,45,8);</p><p>          border-top:none;</p><p>          width:67%;</p><p>          letter-spacing:-6px;</p><p>          box-sizing:border-box;</p><p>          padding-right:5px;</p><p>          border-radius:6px;</p><p>          font-size:35px;</p><p>          font-weight:bold;</p><p>          }  </p><p>            </p><p>         h1 span{</p><p>             position:relative;</p><p>             display:inline-block;</p><p>             margin-right:3px;</p><p>         }</p><p>            </p><p>         </p><p>     @keyframes shahir{</p><p>         0%</p><p>         {</p><p>            transform: translateY(0px) rotate(0deg);</p><p>         }</p><p>         40%</p><p>         {</p><p>            transform: translateY(0px) rotate(0deg);</p><p>         }</p><p>         50%</p><p>         {</p><p>            transform: translateY(-50px)rotate(180deg);;</p><p>         }</p><p>         60%</p><p>         {</p><p>            transform: translateY(0px)rotate(360deg);;</p><p>         }</p><p>         100%</p><p>         {</p><p>            transform: translate(0px)rotate(360deg);;</p><p>         }}</p><p>         </p><p>       h1 span</p><p>         {</p><p>            animation: shahir 3s alternate infinite linear; </p><p>         } </p><p>         </p><p>         </p><p>         </p><p>         </p><p>         h1 span:nth-child(1)</p><p>         {color:pink;</p><p>           animation-delay: 0s;</p><p>         }</p><p>         h1 span:nth-child(2)</p><p>         {color:lightmaroon;</p><p>           animation-delay: 0.2s;</p><p>         }</p><p>         h1 span:nth-child(3)</p><p>         {color:red;</p><p>           animation-delay:0s;</p><p>         }</p><p>         h1 span:nth-child(4)</p><p>         {color:lightgreen;</p><p>           animation-delay: 0.4s;</p><p>         }</p><p>         h1 span:nth-child(5)</p><p>         {color:blue;</p><p>           animation-delay: 0.5s;</p><p>         }</p><p>         h1 span:nth-child(6)</p><p>         {color:purple;</p><p>           animation-delay: 0.3s;</p><p>         }</p><p></p><p>              &lt;/style&gt;</p><p>        &lt;meta name="viewport" content="width=device-width"  &gt;</p><p>        </p><p>    &lt;/head&gt; </p><p>    &lt;body&gt;</p><p>    &lt;center&gt;</p><p>    &lt;div&gt;</p><p>        &lt;h1&gt;</p><p>            &lt;span&gt;T&lt;/span&gt;</p><p>            &lt;span&gt;H&lt;/span&gt;</p><p>            &lt;span&gt;A&lt;/span&gt;</p><p>            &lt;span&gt;N&lt;/span&gt;</p><p>            &lt;span&gt;K&lt;/span&gt;</p><p>            &lt;span&gt;S&lt;/span&gt;</p><p>        &lt;/h1&gt; </p><p>    &lt;/div&gt;</p><p>        &lt;/center&gt;</p><p>    &lt;/body&gt;    </p><p>&lt;/html&gt;</p><p></p><p>

</p><p></p><p></p><p>&lt;svg class= "heart" viewBox= "-2 -2 98.6 90.81"&gt;</p><p></p><p>  &lt;title&gt;Corazon&lt;/title&gt;</p><p>  </p><p>    </p><p>  &lt;path stroke= "firebrick" stroke-width= "3" d= "M86.81,8.15a27.79,27.79,0,0,1,0,39.33L47.48,86.81,8.15,47.48A27.81,27.81,0,0,1,47.48,8.15,27.79,27.79,0,0,1,86.81,8.15Z"/&gt;</p><p>  </p><p>&lt;/svg&gt;</p><p>&lt;style&gt;</p><p>body {</p><p> display: grid;</p><p> min-height: 100vh;</p><p> justify-content: center;</p><p> align-content: center;</p><p> background: repeating-linear-gradient(circle, white, yellow, red); </p><p> background: repeating-radial-gradient(circle, white, yellow, red);</p><p>}</p><p></p><p></p><p></p><p></p><p>@keyframes heart-path {</p><p> 99% {</p><p>   stroke-dashoffset: 0;</p><p>   fill: none;</p><p> }</p><p> 100% {</p><p>   fill: firebrick;</p><p> }</p><p>}</p><p></p><p>&lt;/style&gt;</p><p></p><p></p><p>

Similar questions