Math, asked by XEVILX, 11 months ago

Hey folks!

I've got an interesting Question. Let's see how many of you are gonna get correct answers.

P.S. - It's easy-peasy. Just use your Vision Power at fullest xD ​

Attachments:

Answers

Answered by StarrySoul
180

Solution :

Let the value of shoes be x

In First Row :

 \sf \longrightarrow \: x + x + x = 60

 \sf \longrightarrow \: x =  \cancel\dfrac{60}{3}

 \sf \longrightarrow \: x =  \boxed{ \purple{ \sf 20 }}

Let the value of Man be y

In Second Row :

 \sf \longrightarrow \: x + y+ y = 30

 \sf \longrightarrow \: 20 +2 y= 30

 \sf \longrightarrow \: 2 y= 30 - 20

 \sf \longrightarrow \: 2 y= 10

 \sf \longrightarrow \:y=  \cancel\dfrac{10}{2}

 \sf \longrightarrow \: y =  \boxed{ \purple{ \sf 5 }}

Let the value of glasses be z

In Third Row :

 \sf \longrightarrow \: z+ y+ z = 9

 \sf \longrightarrow \: z+ 5+ z = 9

 \sf \longrightarrow \: 2z +  5= 9

 \sf \longrightarrow \: 2z  = 9 - 5

 \sf \longrightarrow \: 2z  = 4

 \sf \longrightarrow \: z  =   \cancel\dfrac{4}{2}

 \sf \longrightarrow \: z=  \boxed{ \purple{ \sf 2 }}

Let the value of glove be g

In Fourth Row :

 \sf \longrightarrow \: x + g + z = 42

 \sf \longrightarrow \: 20+ g + 20 = 42

 \sf \longrightarrow \: 22+ g = 42

 \sf \longrightarrow \ g = 42 - 22

 \sf \longrightarrow \: g=  \boxed{ \purple{ \sf 20 }}

Now, The Last Row is Tricky one. Here, We've to find the value of :

 \longrightarrow\sf \: Shoe  \: + (Man+Glasses+Shoes \: +Glove+Glove \:  )  \times  Glasses

 \longrightarrow \sf \: (20 - 10) + (5 + 2 + 20 + 20 + 20) \times 2

 \longrightarrow \sf \: 10+ (67\times 2)

 \longrightarrow \sf \: 10+ 134

 \sf \longrightarrow \:  \huge\boxed{ \red{ \sf 144 }}

Hence,Required Value is 144


Rythm14: wowo adi :D
StarrySoul: Thank you Rythm! ♡
Anonymous: Awesome
StarrySoul: Thank you Anku Di! :P
Answered by EliteSoul
89

Answer:

\large{\underline{\boxed{\mathfrak\blue{Answer = 144 }}}}

\rule{100}{2}

1st case:-

Let one pair of shoes = s

\dashrightarrow\sf 2s + 2s + 2s = 60 \\\\\dashrightarrow\sf 6s = 60 \\\\\dashrightarrow\sf s = 60/6 \\\\\dashrightarrow\large\sf\green{s = 10 \dots \dots \dots (eq.1)}

\rule{200}{1}

\therefore\sf 2s = 2(10) = 20

2nd case:-

Let one person = P

Putting value of s From (eq.1):-

\dashrightarrow\sf 20 + P + P = 30 \\\\\dashrightarrow\sf 20 + 2P = 30 \\\\\dashrightarrow\sf 2P = 30 - 20 \\\\\dashrightarrow\sf 2P = 10 \\\\\dashrightarrow\sf P = 10/2 \\\\\dashrightarrow\large\sf\red{P = 5 \dots \dots \dots (eq.2)}

\rule{200}{1}

3rd case:-

Let one sunglass = X

Putting value of P from (eq.2) :-

\dashrightarrow\sf X + 5 + X = 9 \\\\\dashrightarrow\sf 2X = 9 - 5 \\\\\dashrightarrow\sf 2X = 4 \\\\\dashrightarrow\sf X = 4/2 \\\\\dashrightarrow\large\sf\pink{X = 2 \dots \dots \dots (eq.3)}

\rule{200}{1}

4th case:-

Let 1 glove = B

Now,putting values of s & X from (eq.1) & (eq.3):-

\dashrightarrow\sf 20 + B + 2 = 42 \\\\\dashrightarrow\sf 22 + B = 42 \\\\\dashrightarrow\sf B = 42 - 22 \\\\\dashrightarrow\large\sf\orange{B = 20 \dots \dots \dots (eq.4)}

\rule{200}{1}

Finally 5th case:-

Putting values of s, P & X from (eq.1),(eq.2) & (eq.3) :-

As there are just 1 pair of shoes, then the person has sunglass in his eyes,two gloves in hands,one shoe in legs.

\dashrightarrow\sf s + (p + 2B + s + X) \times X = 10 + (5 + 20(2) + 20 + 2) \times 2 \\\\\\\dashrightarrow\sf s + (P + 2B + s + X) \times X = 10 + (5 + 40 + 20 + 2)\times 2 \\\\\\\dashrightarrow\sf s + (P + 2B + s +  X)\times X = 10 + 67 \times 2 \\\\\\\dashrightarrow\sf s + (P + 2B + s + X) \times X = 10 + 134 \\\\\\\dashrightarrow\large{\underline{\boxed{\sf\blue{s + (P + 2B + s +  X)\times X = 144 }}}}


Anonymous: Great
Similar questions