Hey!
For genius here.
Use Euclid's Division lemma to show that the Square of any positive integer cannot be of form 5m+2 or 5m+3 for some integer m.
Don't dare to spam.
sionjaison2003:
bad
Answers
Answered by
108
▶ Question : -
→ Use Euclid's Division lemma to show that the Square of any positive integer cannot be of form 5m + 2 or 5m + 3 for some integer m.
▶ Step-by-step explanation : -
Let ‘a’ be the any positive integer .
And, b = 5 .
→ Using Euclid's division lemma :-
==> a = bq + r ; 0 ≤ r < b .
==> 0 ≤ r < 5 .
•°• Possible values of r = 0, 1, 2, 3, 4 .
→ Taking r = 0 .
Then, a = bq + r .
==> a = 5q + 0 .
==> a = ( 5q )² .
==> a = 5( 5q² ) .
•°• a = 5m . [ Where m = 5q² ] .
→ Taking r = 1 .
==> a = 5q + 1 .
==> a = ( 5q + 1 )² .
==> a = 25q² + 10q + 1 .
==> a = 5( 5q² + 2q ) + 1 .
•°• a = 5m + 1 . [ Where m = 5q² + 2q ] .
→ Taking r = 2 .
==> a = 5q + 2 .
==> a = ( 5q + 2 )² .
==> a = 25q² + 20q + 4 .
==> a = 5( 5q² + 4q ) + 4 .
•°• a = 5m + 4 . [ Where m = 5q² + 4q ] .
→ Taking r = 3 .
==> a = 5q + 3 .
==> a = ( 5q + 3 )² .
==> a = 25q² + 30q + 9 .
==> a = 25q² + 30q + 5 + 4 .
==> a = 5( 5q² + 6q + 1 ) + 4 .
•°• a = 5m + 4 . [ Where m = 5q² + 6q + 1 ] .
→ Taking r = 4 .
==> a = 5q + 4 .
==> a = ( 5q + 4 )² .
==> a = 25q² + 40q + 16 .
==> a = 25q² + 40q + 15 + 1 .
==> a = 5( 5q² + 8q + 3 ) + 1 .
•°• a = 5m + 1 . [ Where m = 5q² + 8q + 3 ] .
→ Therefore, square of any positive integer in cannot be of the form 5m + 2 or 5m + 3 .
✔✔ Hence, it is proved ✅✅.
→ Use Euclid's Division lemma to show that the Square of any positive integer cannot be of form 5m + 2 or 5m + 3 for some integer m.
▶ Step-by-step explanation : -
Let ‘a’ be the any positive integer .
And, b = 5 .
→ Using Euclid's division lemma :-
==> a = bq + r ; 0 ≤ r < b .
==> 0 ≤ r < 5 .
•°• Possible values of r = 0, 1, 2, 3, 4 .
→ Taking r = 0 .
Then, a = bq + r .
==> a = 5q + 0 .
==> a = ( 5q )² .
==> a = 5( 5q² ) .
•°• a = 5m . [ Where m = 5q² ] .
→ Taking r = 1 .
==> a = 5q + 1 .
==> a = ( 5q + 1 )² .
==> a = 25q² + 10q + 1 .
==> a = 5( 5q² + 2q ) + 1 .
•°• a = 5m + 1 . [ Where m = 5q² + 2q ] .
→ Taking r = 2 .
==> a = 5q + 2 .
==> a = ( 5q + 2 )² .
==> a = 25q² + 20q + 4 .
==> a = 5( 5q² + 4q ) + 4 .
•°• a = 5m + 4 . [ Where m = 5q² + 4q ] .
→ Taking r = 3 .
==> a = 5q + 3 .
==> a = ( 5q + 3 )² .
==> a = 25q² + 30q + 9 .
==> a = 25q² + 30q + 5 + 4 .
==> a = 5( 5q² + 6q + 1 ) + 4 .
•°• a = 5m + 4 . [ Where m = 5q² + 6q + 1 ] .
→ Taking r = 4 .
==> a = 5q + 4 .
==> a = ( 5q + 4 )² .
==> a = 25q² + 40q + 16 .
==> a = 25q² + 40q + 15 + 1 .
==> a = 5( 5q² + 8q + 3 ) + 1 .
•°• a = 5m + 1 . [ Where m = 5q² + 8q + 3 ] .
→ Therefore, square of any positive integer in cannot be of the form 5m + 2 or 5m + 3 .
✔✔ Hence, it is proved ✅✅.
Answered by
112
Use Euclid's Division lemma to show that the Square of any positive integer cannot be of form 5m+2 or 5m+3 for some integer m.
Let a be any positive integer and b= 5.
According to Euclid's Division lemma,
=) a = bq + r, where r = 0,1,2,3,4.
=) a = 5q, 5q+1, 5q+2, 5q+3, 5q+4.
If a = 5q,
=) a² = (5q)²
= 25q²
= 5(m) where m = 5q².
If a = 5q+1,
=) a² = (5q+1)²
= 25q² + 10q + 1
= 5(5q² + 2q) +1
= 5m + 1, where m = 5q² + 2q.
If a = 5q+2,
=) a² = (5q+2)²
= 25q² + 20q + 4
= 5(5q² + 4q) + 4
= 5m + 4, where m = 5q² + 4q.
If a = 5q+ 3,
=) a² = (5q+3)²
= 25q² + 30q + 9
= 25q² + 30q + 5 + 4
= 5(5q² + 6q +1)+ 4
= 5m + 4, where m = (5q² + 6q +1).
If a = 5q + 4,
=) a² = (5q+4)²
= 25q² + 40q + 16
= 25q² + 40q + 15 + 1
= 5(5q² + 8q +3) + 1
= 5m +1, where m = (5q² + 8q +3).
Hence Square of any positive integer cannot be of form 5m+2 or 5m+3 for some integer m. Proved.
Let a be any positive integer and b= 5.
According to Euclid's Division lemma,
=) a = bq + r, where r = 0,1,2,3,4.
=) a = 5q, 5q+1, 5q+2, 5q+3, 5q+4.
If a = 5q,
=) a² = (5q)²
= 25q²
= 5(m) where m = 5q².
If a = 5q+1,
=) a² = (5q+1)²
= 25q² + 10q + 1
= 5(5q² + 2q) +1
= 5m + 1, where m = 5q² + 2q.
If a = 5q+2,
=) a² = (5q+2)²
= 25q² + 20q + 4
= 5(5q² + 4q) + 4
= 5m + 4, where m = 5q² + 4q.
If a = 5q+ 3,
=) a² = (5q+3)²
= 25q² + 30q + 9
= 25q² + 30q + 5 + 4
= 5(5q² + 6q +1)+ 4
= 5m + 4, where m = (5q² + 6q +1).
If a = 5q + 4,
=) a² = (5q+4)²
= 25q² + 40q + 16
= 25q² + 40q + 15 + 1
= 5(5q² + 8q +3) + 1
= 5m +1, where m = (5q² + 8q +3).
Hence Square of any positive integer cannot be of form 5m+2 or 5m+3 for some integer m. Proved.
Similar questions