Math, asked by drmuskaanjain8844, 10 months ago

hey frds plz help

The one who will spam its account will be deleted​

Attachments:

Answers

Answered by Rohith200422
8

Question:

Find \: the \: value \: of :   \frac{ {(a + b)}^{2} }{ab}  +  \frac{ {(b + c)}^{2} }{bc} +  \frac{ {(c + a)}^{2} }{ca}

Answer:

The \: value \: is \: \boxed{3}

Step-by-step explanation:

\frac{ {(a + b)}^{2} }{ab}  +  \frac{ {(b + c)}^{2} }{bc} +  \frac{ {(c + a)}^{2} }{ca}

Rule :-

In this case we know that if a + b + c = 0 ,

then a³ + b³ + c³ = 0 .

a + b + c = 0

 \boxed{a + b =  - c}

 \boxed{b + c =   - a}

 \boxed{c + a =  - b}

  = \frac{{( - c)}^{2} }{ab}+\frac{{( - a)}^{2}  }{bc}+ \frac{{( - b)}^{2}}{ca}

  = \frac{{(  c)}^{2} }{ab}+\frac{{(  a)}^{2}  }{bc}+ \frac{{(  b)}^{2}}{ca}

  = \frac{{a}^{2}  }{bc}+ \frac{{  b}^{2}}{ca}  +   \frac{ {c}^{2} }{ab}

L.C.M. is abc

 =  \frac{ {a}^{3} +  {b}^{3} +  {c}^{3}   }{abc}

 =  \frac{3abc}{abc}

  \boxed{= 3}

Formula & Rules :-

 {a}^{3}  +  {b}^{3}  +  {c}^{3} = (a + b + c)( {a}^{2} +  {b}^{2} +  {c}^{2} - ab - bc - ca) + (3abc)

Here, a + b + c = 0

 {a}^{3}  +  {b}^{3}  +  {c}^{3} = (0)( {a}^{2} +  {b}^{2} +  {c}^{2} - ab - bc - ca) + (3abc)

\boxed{{a}^{3}  +  {b}^{3}  +  {c}^{3}  = 3abc}

Similar questions