Hey friends
Check whether the first polynomial is a factor of the second polynomial by applying Euclid's division algorithm for each of the following .
Hint:Answer given in book is" Yes"
So please solve it
NO SPAM OR COPYING FROM THE INTERNET
Answers
Step-by-step explanation:
Given Equation is x² - 5x + 6.
Given Equation is 10x⁴ + 8x² + 6x + 3.
Euclid's division algorithm:
Dividend = Quotient * Divisor + Remainder
10x⁴ + 8x² + 6x + 3 = g(x) * q(x) + r(x)
10x⁴ + 8x² + 6x + 3 = (x² - 5x + 6)(ax² + bx + c) + (px + q)
10x⁴ + 0x³ + 8x² + 6x + 3 = ax⁴ + (b - 5a)x³ + (c - 5b + 6a)x² + (p - 5c + 6b) x + 6c + q
Equating the coefficient of powers of x, we get
a = 10, (b - 5a) = 0, c - 5b + 6a = 8, p - 5c + 6b = 6, 6c + q = 3
(i)
b - 5a = 0
b - 5(10) = 0
b = 50.
(ii)
c - 5b + 6a = 8
c - 5(50) + 6(10) = 8
c - 250 + 60 = 8
c = 198
(iii)
6c + q = 3
6(198) + q = 3
1188 + q = 3
q = -1185
(iv)
p - 5c + 6b = 6
p - 5(198) + 6(50) = 6
p - 990 + 300 = 6
p = 696.
So,Quotient = 10x² + 50x + 198,Remainder = 696x - 1185.
Here,the remainder is not equal to 0.
Therefore g(x) is not a factor of p(x).
-------------------------------------------------------------------------------------------
Long-division method:
x² - 5x + 6) 10x⁴ + 0x³ + 8x² + 6x + 3 ( 10x² + 50x + 198
10x⁴ - 50x³ + 60x²
-----------------------------------
50x³ - 52x² + 6x + 3
50x² - 250x² + 300x + 3
------------------------------------------
198x² - 294x + 3
198x² - 990x + 1188
-------------------------------------------
696x - 1185
Here, remainder is not equal to 0.
Therefore, g(x) is not a factor of f(x).
Hope this helps!