Hey Friends!!
Here's my question in the above attachment!
No spamming ✖ ✖ ✖
Attachments:
Answers
Answered by
3
hope this will help you dear
Attachments:
Answered by
2
(4)
Given p(x) = x^4 - x^2 - 12.
Given g(x) = x + 2.
x^3 - 2x^2 + 3x - 6
------------------------------------------------
= > x + 2) x^4 - x^2 - 12
x^4 + 2x^3 - x^2
----------------------------------------------
-2x^3 - x^2 - 12
- 2x^3 - 4x^2 - 12
--------------------------------------------------
3x^2 - 12
3x^2 + 6x
-----------------------------------------------------
-6x - 12
-6x - 12
-----------------------------------------------------
0.
Therefore Quotient = x^3 - 2x^2 + 3x - 6 with a remainder = 0.
(5)
Given f(x) = 69 + 11x - x^2 + x^3
Given g(x) = x + 3
x^2 - 4x + 23
------------------------------------
x + 3) x^3 - x^2 + 11x + 69
x^3 + 3x^2
-------------------------------------
-4x^2 + 11x + 69
- 4x^2 - 12x
--------------------------------------
23x + 69
23x + 69
--------------------------------------
0.
Therefore Quotient = x^2 - 4x + 23 with a remainder 0.
(6)
Given p(x) = 2x^3 + 9x^2 - 11x - 30
Given g(x) = x + 5
2x^2 - x - 6
-------------------------------------------------
x + 5) 2x^3 + 9x^2 - 11x - 30
2x^3 + 10x^2
----------------------------------------------------------
-x^2 - 11x - 30
-x^2 - 5x
-----------------------------------------------------------------
- 6x - 30
- 6x - 30
----------------------------------------------------------------
0.
Therefore Quotient = 2x^2 - x - 6 with a remainder 0.
Hope this helps!
Given p(x) = x^4 - x^2 - 12.
Given g(x) = x + 2.
x^3 - 2x^2 + 3x - 6
------------------------------------------------
= > x + 2) x^4 - x^2 - 12
x^4 + 2x^3 - x^2
----------------------------------------------
-2x^3 - x^2 - 12
- 2x^3 - 4x^2 - 12
--------------------------------------------------
3x^2 - 12
3x^2 + 6x
-----------------------------------------------------
-6x - 12
-6x - 12
-----------------------------------------------------
0.
Therefore Quotient = x^3 - 2x^2 + 3x - 6 with a remainder = 0.
(5)
Given f(x) = 69 + 11x - x^2 + x^3
Given g(x) = x + 3
x^2 - 4x + 23
------------------------------------
x + 3) x^3 - x^2 + 11x + 69
x^3 + 3x^2
-------------------------------------
-4x^2 + 11x + 69
- 4x^2 - 12x
--------------------------------------
23x + 69
23x + 69
--------------------------------------
0.
Therefore Quotient = x^2 - 4x + 23 with a remainder 0.
(6)
Given p(x) = 2x^3 + 9x^2 - 11x - 30
Given g(x) = x + 5
2x^2 - x - 6
-------------------------------------------------
x + 5) 2x^3 + 9x^2 - 11x - 30
2x^3 + 10x^2
----------------------------------------------------------
-x^2 - 11x - 30
-x^2 - 5x
-----------------------------------------------------------------
- 6x - 30
- 6x - 30
----------------------------------------------------------------
0.
Therefore Quotient = 2x^2 - x - 6 with a remainder 0.
Hope this helps!
SpottedCapricon7:
plz try my other questions too
Similar questions