Math, asked by Anonymous, 1 year ago

Hey!! friends
plzz....solve the above question!!

how to solve after that step I'm stuck ?

<Marquee>

\boxed{\colorbox{teal}{Anyone plz answer fast}}

Attachments:

Answers

Answered by Anonymous
49

\underline{\underline{\mathfrak{\Large{Solution : }}}}



\sf = log_p \: \left( log_p \: \sqrt[p]{\sqrt[p]{  \sqrt[p]{ \sqrt[p]{ \sqrt[p]{p..... \: n \: times} } } }} \right) \\  \\  \\  \sf =  \: log_p \:  \left( log_p \:  {p}^{  \normalsize{\frac{1}{ {p}^{n} } }}  \right) \\  \\  \\  \sf = log_p \:  \left(  \dfrac{1}{  {p}^{n}  } \:log_p \: p \right) \\  \\  \\  \sf = log_p \:  \left (  \dfrac{1}{ {p}^{n} }  \:  \times  \: 1\right) \\  \\  \\  \sf =  \: log_p \:  \:   \left(\dfrac{1}{ {p}^{n} }  \right) \\  \\  \\   \sf =  \: log_p \:  {p}^{( - n)}  \\  \\  \\   \sf = ( - n) \: log_p \: p \\  \\  \\  \sf = ( - n) \:  \times  \: 1 \\  \\  \\   \sf =  - n




\underline{\textsf{Logarithm Rule Used : }} \\ \\ \sf \implies log_a \: b^c \: = \: c \: log_a \: b \\ \\ \sf \implies log_a \: a \: = \: 1 \\  \\  \underline{\textsf{Algebraic Identity Used : }} \\ \\ \sf \implies \dfrac{1}{a^n} \: = \: a^{(-n)}<br />

Anonymous: Glad you like it ! Same to uhh ☺
Anonymous: great answer.....!!!!!! bro
shashankavsthi: well explained ✔️
Avengers00: great answer (:
Similar questions