Math, asked by pakhi6, 1 year ago

Hey friends...
Prove that sin A / 1+ cos A = cosec A - cot A

Answers

Answered by TheLifeRacer
75
Hey !!!

Here is ur solution ;-

from LHS

sinA/1 + cosA

multiplying by (1 - cosA) on numerator and denominator

sinA ___(1 - cosA)
----------×
1+cosA_(1-cosA)

sinA - sinA×cosA
-----------------------
1² - cos²A

sinA - sinA×cosA
------------------------
sin²A



sin(1-cosA)
---------------
sin²A

1 - cosA
------------
sinA

=> 1/sinA -cosA/sinA

=> cosecA - cotA RHS prooved

**********************************

Hope it helps you !!

@Rajukumar111
Answered by sivaprasath
157
Solution :

_____________________________________________________________

Given :

To prove that :

 \frac{Sin A}{1 + Cos A} = Cosec  A - Cot A

_____________________________________________________________

Proof :

LHS =  \frac{Sin A}{1 + Cos A}

By multiplying with 1 - Cos A both the sides,

We get,

 \frac{Sin A}{1 + Cos A} ( \frac{1 - Cos A}{1 - Cos A} )

 \frac{Sin A (1 - Cos A)}{(1 + Cos A)(1 - Cos A)}

The denominator is in the form,

⇒ (a + b)(a - b),.

Hence,

We can use this identity : (a - b)(a + b) = a² - b²


 \frac{Sin A (1 - Cos A)}{1^2 - Cos^{2} A }

 \frac{Sin A (1 - Cos A)}{1 - Cos^{2} A}


We know that,

⇒ Sin² A + Cos² A = 1

∴ Sin²A = 1 - Cos² A

 \frac{Sin A (1 - Cos A)}{ Sin^2 A }

 \frac{Sin A (1 - Cos A)}{(Sin A)(Sin A)}

 \frac{1 - Cos A}{Sin A}

 \frac{1}{Sin A} -  \frac{Cos A}{Sin A}

Cosec A - Cot A

_____________________________________________________________

                                            Hope it Helps !!




pakhi6: waoh! thanks a lot... :-)
Similar questions