Hey friends...
Prove that sin A / 1+ cos A = cosec A - cot A
Answers
Answered by
75
Hey !!!
Here is ur solution ;-
from LHS
sinA/1 + cosA
multiplying by (1 - cosA) on numerator and denominator
sinA ___(1 - cosA)
----------×
1+cosA_(1-cosA)
sinA - sinA×cosA
-----------------------
1² - cos²A
sinA - sinA×cosA
------------------------
sin²A
sin(1-cosA)
---------------
sin²A
1 - cosA
------------
sinA
=> 1/sinA -cosA/sinA
=> cosecA - cotA RHS prooved
**********************************
Hope it helps you !!
@Rajukumar111
Here is ur solution ;-
from LHS
sinA/1 + cosA
multiplying by (1 - cosA) on numerator and denominator
sinA ___(1 - cosA)
----------×
1+cosA_(1-cosA)
sinA - sinA×cosA
-----------------------
1² - cos²A
sinA - sinA×cosA
------------------------
sin²A
sin(1-cosA)
---------------
sin²A
1 - cosA
------------
sinA
=> 1/sinA -cosA/sinA
=> cosecA - cotA RHS prooved
**********************************
Hope it helps you !!
@Rajukumar111
Answered by
157
Solution :
_____________________________________________________________
Given :
To prove that :
⇒
_____________________________________________________________
Proof :
LHS =
By multiplying with 1 - Cos A both the sides,
We get,
⇒
⇒
The denominator is in the form,
⇒ (a + b)(a - b),.
Hence,
We can use this identity : (a - b)(a + b) = a² - b²
⇒
⇒
We know that,
⇒ Sin² A + Cos² A = 1
∴ Sin²A = 1 - Cos² A
⇒
⇒
⇒
⇒
⇒
_____________________________________________________________
Hope it Helps !!
_____________________________________________________________
Given :
To prove that :
⇒
_____________________________________________________________
Proof :
LHS =
By multiplying with 1 - Cos A both the sides,
We get,
⇒
⇒
The denominator is in the form,
⇒ (a + b)(a - b),.
Hence,
We can use this identity : (a - b)(a + b) = a² - b²
⇒
⇒
We know that,
⇒ Sin² A + Cos² A = 1
∴ Sin²A = 1 - Cos² A
⇒
⇒
⇒
⇒
⇒
_____________________________________________________________
Hope it Helps !!
pakhi6:
waoh! thanks a lot... :-)
Similar questions