Hey friends!
Solve this!!
Q. Given 5 cosA - 12 sinA = 0, find the value of sinA + cosA / 2 cosA - sinA.
Answers
Answered by
3
5cosA-12sinA=0
5cosA = 12sinA
sinA = 5cosA /12 .... (1)
(sinA + cosA) .... (2)
(2cosA -sinA)
sub (1) in (2)
(5cosA/12) + cosA
2cosA- (5cosA/12)
LCM= 12
(5cosA + 12 cosA) / 12
(24cosA- 5cosA) /12
12 get cancelled
5cosA +12 cosA
24cosA – 5cosA
17 cosA
19cosA
cosA get cancelled
Therefore the result is 17/19
5cosA = 12sinA
sinA = 5cosA /12 .... (1)
(sinA + cosA) .... (2)
(2cosA -sinA)
sub (1) in (2)
(5cosA/12) + cosA
2cosA- (5cosA/12)
LCM= 12
(5cosA + 12 cosA) / 12
(24cosA- 5cosA) /12
12 get cancelled
5cosA +12 cosA
24cosA – 5cosA
17 cosA
19cosA
cosA get cancelled
Therefore the result is 17/19
Answered by
3
Given 5cosA - 12sinA = 0
5 - 12tanA = 0
-12tanA = -5
tanA = 5/12.
Now,
We know that sec^2A = 1 + tan^2A
sec^2A = 1 + (5/12)^2
sec^2A = 1 + 25/144
sec^2A = 169/144
secA = 13/12.
Now,
We know that secA = 1/cosA
13/12 = 1/cosA
13cosA = 12
cosA = 12/13..
Now,
We know that sin^2A + cos^2A = 1
sin^2A + (12/13)^2 = 1
sin^2A + 144/169 = 1
sin^2A = 1 - 144/169
sin^2A = 169 -144/169
sin^2A = 25/169
sinA = 5/13.
Therefore :
Hope this helps!
5 - 12tanA = 0
-12tanA = -5
tanA = 5/12.
Now,
We know that sec^2A = 1 + tan^2A
sec^2A = 1 + (5/12)^2
sec^2A = 1 + 25/144
sec^2A = 169/144
secA = 13/12.
Now,
We know that secA = 1/cosA
13/12 = 1/cosA
13cosA = 12
cosA = 12/13..
Now,
We know that sin^2A + cos^2A = 1
sin^2A + (12/13)^2 = 1
sin^2A + 144/169 = 1
sin^2A = 1 - 144/169
sin^2A = 169 -144/169
sin^2A = 25/169
sinA = 5/13.
Therefore :
Hope this helps!
siddhartharao77:
Gud luck!
Similar questions