Math, asked by vamritaeunameun, 1 year ago

Hey Friends!! solve this quest!
______________________________________________
Q) If f:R->R and g:R->R are defined by f(x)=2x+3 and g(x)=x²+7, then the values of x such that g(f(x))=8 are:
Options are:
i) 1,2
ii) -1,2
iii) -1,-2
iv) 1,-2
___________________________________________
Please answer it accurately and BEWARE OF SPAMMING!!

Answers

Answered by Anonymous
10

\red{\bold{ANSWER}}

\rm{-1\:\:,-2}

\mathbb{EXPLANATION}

\rm{F:R\rightarrow\:R}

\rm{F\left(x\right)=2x+3}

\boxed{\mathbb{AND}}

\rm{G:R\rightarrow\:R}

\rm{G\left(x\right)=x^2+7}

\underline{\mathbb{GIVEN}}

\rm{G\left(F\left(x\right)\right)=8}

\rm{G\left(2x+3\right)=8}

\rm{\left(\left(2x+3\right)^2+7\right)=8}

\rm{4x^2+9+12x+7-8=0}

\rm{4x^2+12x+8=0}

\rm{x^2+3x+2=0}

\rm{x^2+2x+x+2=0}

\rm{x\left(x+2\right)+1\left(x+2\right)=0}

\rm{\left(x+2\right)\times\left(x+1\right)=0}

\rm{x=-2\:\:OR\:\:x=-1}

\therefore \rm{x=-2,-1}

\boxed{\rm{\mathbb{HENCE,\:OPTION\:THIRD\:IS\:CORRECT}}}

Answered by Anonymous
4

Answer:

hope it helps you.............

Attachments:
Similar questions